This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361028 #18 Mar 13 2023 07:21:11 %S A361028 2,3,20,210,2772,42042,700128,12471030,233716340,4557468630, %T A361028 91752013080,1896208270320,40055997189600,862021408906800, %U A361028 18849534808095360,417929529573239310,9379553386892837940,212776905535994934750,4873239487455972633000,112571832160232967822300 %N A361028 a(n) = 2*(3*n)!/(n!*(n+1)!^2). %C A361028 Row 0 of square array A361027. %C A361028 The central binomial numbers A000984(n) = (2*n)!/n!^2 have the property that A000984(n) is divisible by n + 1 and the result (2*n)!/(n!*(n+1)!) is the n-th Catalan number A000108(n). Similarly, the de Bruijn numbers A006480(n) = (3*n)!/n!^3 have the property that 2*A006480(n) is divisible by (n+1)^2, leading to the present sequence. Do these numbers have a combinatorial interpretation? %F A361028 a(n) = (2/(n+1)^2) * (3*n)!/n!^3. %F A361028 a(n) = (2/3) * A006480(n+1)/((3*n + 1)*(3*n + 2)), where A006480(n) = (3*n)!/n!^3. %F A361028 a(n) = (1/3)*27^(n+1)*binomial(1/3, n+1)*binomial(2/3, n+1). %F A361028 a(n) = 2*C(2*n,n)*C(3*n,n) - 3*C(2*n,n+1)*C(3*n,2*n) + 2*C(2*n,n)*C(3*n,2*n+2) + 2*C(2*n,n+1)*C(3*n,2*n+2). This formula shows that a(n) is an integer for all n. %F A361028 a(n) = A007226(n) * A000108(n). %F A361028 a(n) ~ sqrt(3)*27^n/(Pi*n^3). %F A361028 P-recursive: (n + 1)^2*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 2. %F A361028 The o.g.f. A(x) satisfies the differential equation %F A361028 x^2*(1 - 27*x)*A''(x) + x*(3 - 54*x)*A'(x) + (1 - 6*x)*A(x) - 2 = 0, with %F A361028 A(0) = 2 and A'(0) = 3. %p A361028 a := proc(n) option remember; if n = 0 then 2 else 3*(3*n-1)*(3*n-2)/ (n+1)^2*a(n-1) end if; end proc: %p A361028 seq(a(n), n = 0..20); %Y A361028 Row 0 of A361027. Cf. A000108, A006480, A007226, A361029, A361030, A361031, A361033. %K A361028 nonn,tabl,easy %O A361028 0,1 %A A361028 _Peter Bala_, Feb 28 2023