This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361043 #19 Mar 20 2023 14:14:49 %S A361043 1,2,1,3,2,1,4,4,2,1,5,8,8,2,1,6,16,32,22,2,1,7,32,128,170,72,2,1,8, %T A361043 64,512,1366,992,254,2,1,9,128,2048,10922,16512,6008,926,2,1,10,256, %U A361043 8192,87382,261632,215766,37130,3434,2,1,11,512,32768,699050,4196352,6643782,2973350,232562,12872,2,1 %N A361043 Array read by descending antidiagonals. A(n, k) is, if n > 0, the number of multiset permutations of {0, 1} of length n * k where the number of occurrences of 1 are multiples of n. A(0, k) = k + 1. %C A361043 Because of the interchangeability of 0 and 1 in the definition, A(n, k) is even if n, k >= 1. In other words, if the binary representation of a permutation of the defined type is counted, then so is the 1's complement of that representation. %F A361043 A(n, k) = Sum_{j=0..k} binomial(n*k, n*j). %F A361043 T(n, k) = Sum_{j=0..n-k} binomial((n - k)*k, j*k). %e A361043 Array A(n, k) starts: %e A361043 [0] 1, 2, 3, 4, 5, 6, 7, ... A000027 %e A361043 [1] 1, 2, 4, 8, 16, 32, 64, ... A000079 %e A361043 [2] 1, 2, 8, 32, 128, 512, 2048, ... A081294 %e A361043 [3] 1, 2, 22, 170, 1366, 10922, 87382, ... A007613 %e A361043 [4] 1, 2, 72, 992, 16512, 261632, 4196352, ... A070775 %e A361043 [5] 1, 2, 254, 6008, 215766, 6643782, 215492564, ... A070782 %e A361043 [6] 1, 2, 926, 37130, 2973350, 174174002, 11582386286, ... A070967 %e A361043 [7] 1, 2, 3434, 232562, 42484682, 4653367842, 644032289258, ... A094211 %e A361043 . %e A361043 Triangle T(n, k) starts: %e A361043 [0] 1; %e A361043 [1] 2, 1; %e A361043 [2] 3, 2, 1; %e A361043 [3] 4, 4, 2, 1; %e A361043 [4] 5, 8, 8, 2, 1; %e A361043 [5] 6, 16, 32, 22, 2, 1; %e A361043 [6] 7, 32, 128, 170, 72, 2, 1; %e A361043 [7] 8, 64, 512, 1366, 992, 254, 2, 1; %e A361043 [8] 9, 128, 2048, 10922, 16512, 6008, 926, 2, 1; %e A361043 [9] 10, 256, 8192, 87382, 261632, 215766, 37130, 3434, 2, 1; %e A361043 . %e A361043 A(2, 2) = 8 = card(0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111). %e A361043 A(1, 3) = 8 = card(000, 100, 010, 001, 110, 101, 011, 111). %p A361043 T := (n, k) -> add(binomial((n - k)*k, j*k), j = 0 .. n-k): %p A361043 seq(print(seq(T(n, k), k = 0..n)), n = 0..7); %o A361043 (SageMath) # In Python use this import: %o A361043 # from sympy.utilities.iterables import multiset_permutations %o A361043 def A(n: int, k: int) -> int: %o A361043 if n == 0: return k + 1 %o A361043 count = 0 %o A361043 for a in range(0, n * k + 1, n): %o A361043 S = [i < a for i in range(n * k)] %o A361043 count += Permutations(S).cardinality() %o A361043 return count %o A361043 def ARow(n: int, size: int) -> list[int]: %o A361043 return [A(n, k) for k in range(size)] %o A361043 for n in range(6): print(ARow(n, 5)) %Y A361043 Rows: A000027 (n=0), A000079 (n=1), A081294 (n=2), A007613 (n=3), A070775 (n=4), A070782 (n=5), A070967 (n=6), A094211 (n=7), A070832 (n=8), A094213 (n=9), A070833 (n=10). %Y A361043 Variant: A308500 (upwards antidiagonals). %Y A361043 Cf. A167009 (main diagonal). %K A361043 nonn,tabl %O A361043 0,2 %A A361043 _Peter Luschny_, Mar 18 2023