This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361044 #11 Mar 18 2023 08:49:14 %S A361044 1,3,8,12,8,3,1,1,5,24,60,109,161,161,109,60,24,5,1,1,7,48,168,483, %T A361044 1074,1805,2531,2886,2531,1805,1074,483,168,48,7,1 %N A361044 Triangle read by rows. T(n, k) is the k-th Lie-Betti number of the friendship (or windmill) graph, for n >= 1. %C A361044 The triangle is inspired by _Samuel J. Bevins_'s A360571. %C A361044 The friendship graph is constructed by joining n copies of the cycle graph C_3 at a common vertex. F_1 is isomorphic to C_3 (the triangle graph) and has 3 vertices, F_2 is the butterfly graph and has 5 vertices and if n > 2 then F_n has 2*n + 1 vertices. %H A361044 Marco Aldi and Samuel Bevins, <a href="https://arxiv.org/abs/2212.13608">L_oo-algebras and hypergraphs</a>, arXiv:2212.13608 [math.CO], 2022. See page 9. %H A361044 Meera G. Mainkar, <a href="https://arxiv.org/abs/1310.3414">Graphs and two step nilpotent Lie algebras</a>, arXiv:1310.3414 [math.DG], 2013. See page 1. %H A361044 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DutchWindmillGraph.html">Dutch Windmill Graph</a>. %H A361044 Wikipedia, <a href="https://en.wikipedia.org/wiki/Friendship_graph">Friendship Graph</a>. %e A361044 The triangle T(n, k) starts: %e A361044 [1] 1, 3, 8, 12, 8, 3, 1; %e A361044 [2] 1, 5, 24, 60, 109, 161, 161, 109, 60, 24, 5, 1; %e A361044 [3] 1, 7, 48, 168, 483, 1074, 1805, 2531, 2886, 2531, 1805, 1074, 483, 168, 48, 7, 1; %o A361044 (SageMath) %o A361044 from sage.algebras.lie_algebras.lie_algebra import LieAlgebra, LieAlgebras %o A361044 def BettiNumbers(graph): %o A361044 D = {} %o A361044 for edge in graph.edges(): %o A361044 e = "x" + str(edge[0]) %o A361044 f = "x" + str(edge[1]) %o A361044 D[(e, f)] = {e + f : 1} %o A361044 C = (LieAlgebras(QQ).WithBasis().Graded().FiniteDimensional(). %o A361044 Stratified().Nilpotent()) %o A361044 L = LieAlgebra(QQ, D, nilpotent=True, category=C) %o A361044 H = L.cohomology() %o A361044 d = L.dimension() + 1 %o A361044 return [H[n].dimension() for n in range(d)] %o A361044 def A361044_row(n): %o A361044 return BettiNumbers(graphs.FriendshipGraph(n)) %o A361044 for n in range(1, 4): print(A361044_row(n)) %Y A361044 Cf. A360571 (path graph), A360572 (cycle graph), A088459 (star graph), A360625 (complete graph), A360936 (ladder graph), A360937 (wheel graph). %K A361044 nonn,tabf,more %O A361044 1,2 %A A361044 _Peter Luschny_, Mar 01 2023