A361059 Decimal expansion of the asymptotic mean of A000005(k)/A286324(k), the ratio between the number of divisors and the number of bi-unitary divisors.
1, 1, 5, 8, 8, 5, 4, 5, 7, 2, 6, 5, 0, 3, 1, 2, 1, 0, 0, 1, 6, 4, 4, 8, 0, 1, 9, 6, 3, 9, 3, 1, 7, 5, 1, 4, 9, 0, 3, 9, 1, 0, 4, 3, 1, 8, 8, 5, 7, 3, 9, 5, 9, 6, 3, 4, 5, 2, 6, 1, 0, 6, 1, 5, 1, 4, 8, 2, 3, 3, 7, 9, 7, 4, 9, 3, 5, 4, 6, 4, 9, 0, 6, 6, 6, 5, 1, 3, 9, 2, 1, 7, 9, 2, 9, 5, 4, 7, 3, 9, 6, 2, 5, 7, 3
Offset: 1
Examples
1.158854572650312100164480196393175149039104318857395...
Links
- Eric Weisstein's World of Mathematics, Biunitary Divisor.
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 1000; m = 1000; f[p_] := 1 - (p - 1)*Log[1 - 1/p^2]/(2*p); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n], {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 106][[1]]