A361060 Decimal expansion of the asymptotic mean of A286324(k)/A000005(k), the ratio between the number of bi-unitary divisors and the number of divisors.
9, 0, 1, 2, 4, 1, 8, 0, 6, 8, 2, 6, 4, 8, 2, 2, 5, 5, 1, 3, 9, 1, 9, 7, 4, 8, 5, 0, 9, 4, 3, 8, 7, 5, 5, 8, 9, 8, 2, 8, 1, 1, 5, 3, 3, 8, 2, 1, 7, 8, 7, 6, 2, 8, 7, 6, 2, 6, 1, 6, 1, 2, 0, 6, 3, 0, 9, 0, 7, 3, 4, 3, 7, 3, 3, 1, 8, 6, 0, 8, 3, 7, 9, 3, 6, 3, 5, 5, 9, 5, 4, 0, 8, 6, 0, 1, 0, 5, 2, 4, 5, 6, 4, 9, 8
Offset: 0
Examples
0.901241806826482255139197485094387558982811533821787...
Links
- Eric Weisstein's World of Mathematics, Biunitary Divisor.
Crossrefs
Programs
-
Mathematica
$MaxExtraPrecision = 1000; m = 1000; f[p_] := 2 - 1/p - (p - 1)*Log[(p + 1)/(p - 1)]/2; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n], {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]