This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361061 #6 Mar 01 2023 02:39:15 %S A361061 1,1,0,9,0,4,9,6,7,7,9,9,8,7,3,7,3,3,6,3,4,5,2,8,8,5,8,7,7,8,1,6,7,1, %T A361061 7,6,6,0,0,9,7,5,2,6,2,9,6,7,7,3,0,3,9,8,3,7,1,4,2,4,9,9,7,3,5,8,1,3, %U A361061 2,8,8,6,7,6,1,5,7,7,5,0,9,3,4,8,7,3,2,1,3,8,2,6,8,1,7,8,1,0,0,9,4,1,3,0,8 %N A361061 Decimal expansion of the asymptotic mean of A000005(k)/A073184(k), the ratio between the number of divisors and the number of cubefree divisors. %F A361061 Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A000005(k)/A073184(k). %F A361061 Equals Product_{p prime} (1 + 1/(3*(p-1)*p^2)). %e A361061 1.109049677998737336345288587781671766009752629677303... %t A361061 $MaxExtraPrecision = 1000; m = 1000; f[p_] := 1 + 1/(3*(p - 1)*p^2); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[Exp[NSum[Indexed[c, n]*(PrimeZetaP[n]), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] %o A361061 (PARI) prodeulerrat(1 + 1/(3*(p-1)*p^2)) %Y A361061 Cf. A000005, A073184, A361062 (mean of the inverse ratio). %Y A361061 Cf. A307869 (squarefree analog), A308043. %K A361061 nonn,cons %O A361061 1,4 %A A361061 _Amiram Eldar_, Mar 01 2023