This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361063 #16 Jan 08 2025 02:08:01 %S A361063 1,1,1,5,1,1,1,10,5,1,1,5,1,1,1,21,1,5,1,5,1,1,1,10,5,1,10,5,1,1,1,26, %T A361063 1,1,1,25,1,1,1,10,1,1,1,5,5,1,1,21,5,5,1,5,1,10,1,10,1,1,1,5,1,1,5, %U A361063 50,1,1,1,5,1,1,1,50,1,1,5,5,1,1,1,21,21,1,1,5 %N A361063 Multiplicative with a(p^e) = sigma_2(e), where sigma_2 = A001157. %H A361063 Amiram Eldar, <a href="/A361063/b361063.txt">Table of n, a(n) for n = 1..10000</a> %F A361063 Dirichlet g.f.: Product_{primes p} (1 + Sum_{e>=1} sigma_2(e) / p^(e*s)). %F A361063 Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 + Sum_{e>=2} (sigma_2(e) - sigma_2(e-1)) / p^e) = 11.343154585178523783556367128387762286267199879648613456124659589127638983... %t A361063 g[p_, e_] := DivisorSigma[2, e]; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100] %o A361063 (Python) %o A361063 from math import prod %o A361063 from sympy import factorint, divisor_sigma %o A361063 def A361063(n): return prod(divisor_sigma(e,2) for e in factorint(n).values()) # _Chai Wah Wu_, Mar 01 2023 %o A361063 (PARI) a(n) = vecprod(apply(x -> sigma(x, 2), factor(n)[, 2])); \\ _Amiram Eldar_, Jan 07 2025 %Y A361063 Cf. A001157, A049419, A361012, A361064. %Y A361063 Cf. A327837, A361013. %K A361063 nonn,mult %O A361063 1,4 %A A361063 _Vaclav Kotesovec_, Mar 01 2023