This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361065 #29 Feb 16 2025 08:34:04 %S A361065 1,1,7,85,1521,36421,1097743,39968601,1707558401,83777885929, %T A361065 4643185678551,286930307457949,19562851003118833,1458832806486727725, %U A361065 118121195050068075167,10320576944751955718881,967863775658734350214017,96970880819175875321264209 %N A361065 E.g.f. satisfies A(x) = exp( (x/(1-x)) * A(x)^2 ). %H A361065 Winston de Greef, <a href="/A361065/b361065.txt">Table of n, a(n) for n = 0..342</a> %H A361065 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A361065 a(n) = n! * Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n-1,n-k)/k!. %F A361065 E.g.f.: exp( -LambertW(-2*x/(1-x))/2 ). %F A361065 E.g.f.: sqrt( -(1-x)/(2*x) * LambertW(-2*x/(1-x)) ). %F A361065 a(n) ~ (1 + 2*exp(1))^(n + 1/2) * n^(n-1) / (2^(3/2) * exp(n)). - _Vaclav Kotesovec_, Mar 02 2023 %p A361065 A361065 := proc(n) %p A361065 add((2*k+1)^(k-1)*binomial(n-1,n-k)/k!,k=0..n) ; %p A361065 %*n! ; %p A361065 end proc: %p A361065 seq(A361065(n),n=0..10) ; # _R. J. Mathar_, Mar 02 2023 %t A361065 nmax = 20; A[_] = 1; %t A361065 Do[A[x_] = Exp[(x/(1 - x))*A[x]^2] + O[x]^(nmax+1) // Normal, {nmax}]; %t A361065 CoefficientList[A[x], x]*Range[0, nmax]! (* _Jean-François Alcover_, Mar 04 2024 *) %o A361065 (PARI) a(n) = n!*sum(k=0, n, (2*k+1)^(k-1)*binomial(n-1, n-k)/k!); %o A361065 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x/(1-x))/2))) %o A361065 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sqrt(-(1-x)/(2*x)*lambertw(-2*x/(1-x))))) %Y A361065 Cf. A052868, A361066, A361067, A361068, A361069. %K A361065 nonn %O A361065 0,3 %A A361065 _Seiichi Manyama_, Mar 01 2023