This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361075 #14 Sep 10 2024 20:00:45 %S A361075 4849845,5870865,6561555,7402395,7912905,8273265,8580495,8843835, %T A361075 9444435,10015005,10140585,10465455,10555545,10705695,10818885, %U A361075 10975965,11565015,11696685,11996985,12267255,12777765,12785955,13096545,13408395,13498485,13528515,13667745,13803405 %N A361075 Products of exactly 7 distinct odd primes. %H A361075 Karl-Heinz Hofmann, <a href="/A361075/b361075.txt">Table of n, a(n) for n = 1..10000</a> %e A361075 a(1) = 4849845 = 3*5*7*11*13*17*19 %e A361075 a(9663) = 253808555 = 5*7*11*13*17*19*157 %e A361075 a(9961) = 258573315 = 3*5*7*11*13*17*1013 %e A361075 a(10000) = 259173915 = 3*5*7*11*13*41*421 %o A361075 (Python) %o A361075 import numpy %o A361075 from sympy import nextprime, sieve, primepi %o A361075 k_upto = 14 * 10**6 %o A361075 array = numpy.zeros(k_upto,dtype="i4") %o A361075 sieve_max_number = primepi(nextprime(k_upto // 255255)) %o A361075 for s in range(2,sieve_max_number): %o A361075 array[sieve[s]:k_upto][::sieve[s]] += 1 %o A361075 for s in range(2,sieve_max_number): %o A361075 array[sieve[s]**2:k_upto][::sieve[s]**2] = 0 %o A361075 print([k for k in range(1,k_upto,2) if array[k] == 7]) %o A361075 (Python) %o A361075 from math import prod, isqrt %o A361075 from sympy import primerange, integer_nthroot, primepi %o A361075 def A361075(n): %o A361075 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A361075 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,7))) %o A361075 def bisection(f,kmin=0,kmax=1): %o A361075 while f(kmax) > kmax: kmax <<= 1 %o A361075 while kmax-kmin > 1: %o A361075 kmid = kmax+kmin>>1 %o A361075 if f(kmid) <= kmid: %o A361075 kmax = kmid %o A361075 else: %o A361075 kmin = kmid %o A361075 return kmax %o A361075 return bisection(f,n,n) # _Chai Wah Wu_, Sep 10 2024 %Y A361075 Cf. A065091, A046388 (2 distinct odd primes). %Y A361075 Cf. A046389 (3 distinct odd primes), A046390 (4 distinct odd primes). %Y A361075 Cf. A046391 (5 distinct odd primes), A168352 (6 distinct odd primes). %K A361075 nonn %O A361075 1,1 %A A361075 _Karl-Heinz Hofmann_, Mar 01 2023