cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361086 a(n) = a(n-1)*(a(n-1)^2 - 1) with a(0) = 2.

This page as a plain text file.
%I A361086 #34 Apr 17 2023 23:53:36
%S A361086 2,6,210,9260790,794226015149981778210,
%T A361086 500993769952171221242360491304282624082148055373236400176882790
%N A361086 a(n) = a(n-1)*(a(n-1)^2 - 1) with a(0) = 2.
%C A361086 a(6) has 189 digits so it is not displayed here.
%C A361086 It appears that the sequence might be squarefree, but this is unproved so far.
%C A361086 If n is the least index such that  p^2 | a(n+1)  for some prime p, then one must have  p^2 | a(n)+1  or  p^2 | a(n)-1,  and  p >= 5.
%C A361086 If p is prime and p^2 | a(n) for some n, then p > 10^6. - _Robert Israel_, Apr 16 2023
%C A361086 The constant c in the formula can be obtained as exp(log(a(n))/3^n) with more than 3^n/2 significant digits. - _M. F. Hasler_, Apr 13 2023
%H A361086 Winston de Greef, <a href="/A361086/b361086.txt">Table of n, a(n) for n = 0..7</a>
%H A361086 Dan Asimov, <a href="https://mailman.xmission.com/hyperkitty/list/math-fun@mailman.xmission.com/thread/5TNAYAUATD2D5IHWQQIIBPF3QE2O3ILR/">Interesting sequence on MathOverflow</a>, math-fun mailing list (access restricted to subscribers), Mar 28 2023.
%H A361086 Fredrick M. Nelson, <a href="https://mathoverflow.net/questions/443446/">Does a(0)=6, a(n+1)=a(n)^3-a(n), define a square-free sequence?</a>, MathOverflow, Mar 24 2023.
%F A361086 a(n) ~ c^(3^n), where c = 1.8114401993215336517307679103877676944735007990106818615618948774060863424... - _Vaclav Kotesovec_, Apr 13 2023
%e A361086 After a(0) = 2, we have:
%e A361086 a(1) = a(0) * 3 = 6 = A002110(2),
%e A361086 a(2) = a(1) * 5 * 7 = 210 = A002110(4),
%e A361086 a(3) = a(2) * 11 * 19 * 211 = A002110(5) * 19 * 211,
%e A361086 a(4) = a(3) * 23 * 137 * 2939 * 101 * 91691, (*)
%e A361086 a(5) = a(4) * 2381 * 4547 * 73360073674487 * 4111 * 9463 * 20415865295227, (*)
%e A361086 a(6) = a(5) * (a(5)-1) * (a(5)+1)  where  a(5)-1 = 8297 * 2809343 * 1697219017859557 * 12663932268383565339458540396093810087  and
%e A361086   a(5)+1 = 6529 * 11220511276757421196620288973 * 6838691459094922770231096737923,
%e A361086 etc.
%e A361086 (*) We list first the prime factors of a(n-1)-1, then those of a(n-1)+1.
%p A361086 a:= proc(n) option remember; procname(n-1)*(procname(n-1)-1)*(procname(n-1)+1) end proc:
%p A361086 a(0):= 2:
%p A361086 seq(a(i),i=0..7); # _Robert Israel_, Apr 16 2023
%t A361086 RecurrenceTable[{a[n] == a[n-1]*(a[n-1]^2 - 1), a[0] == 2}, a, {n, 0, 6}] (* _Vaclav Kotesovec_, Apr 13 2023 *)
%o A361086 (PARI) A361086_first(N)=vector(N,i,N=if(i>1,N*(N^2-1),2))
%Y A361086 Cf. A002110, A007018, A228649, A361085.
%K A361086 nonn,less
%O A361086 0,1
%A A361086 _M. F. Hasler_, Mar 28 2023