This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361088 #23 Mar 25 2025 08:56:15 %S A361088 1,2,2,2,3,3,2,2,4,2,4,2,4,2,4,3,4,3,3,4,2,4,2,6,2,6,2,4,6,2,4,2,4,4, %T A361088 5,4,4,5,4,5,5,2,2,6,2,6,6,2,6,2,6,4,4,2,6,4,4,2,8,4,4,2,8,4,2,8,2,8, %U A361088 3,8,3,3,4,4,6,2,4,4,6,2,8,4,6,2,8,2,6,2,8,2,6,2,8 %N A361088 Irregular table, read by rows, where row n holds the tau signature of n, i.e., the shortest sequence (tau(n+k), 0 <= k <= m) that uniquely identifies n; tau = A000005. %C A361088 Row lengths are given by A309981(n) + 1; see there (and the OEIS wiki page) for examples. %H A361088 M. F. Hasler et al, <a href="/wiki/A309981">tau signature</a>, OEIS Wiki, April 2023. %e A361088 The first 20 rows read as follows: %e A361088 n | row n: tau-signature of n %e A361088 ---+-------------------------- %e A361088 1 | [1] %e A361088 2 | [2, 2] %e A361088 3 | [2, 3] %e A361088 4 | [3, 2] %e A361088 5 | [2, 4, 2] %e A361088 6 | [4, 2, 4] %e A361088 7 | [2, 4, 3] %e A361088 8 | [4, 3] %e A361088 9 | [3, 4, 2] %e A361088 10 | [4, 2, 6] %e A361088 11 | [2, 6, 2, 4] %e A361088 12 | [6, 2, 4] %e A361088 13 | [2, 4, 4, 5] %e A361088 14 | [4, 4, 5] %e A361088 15 | [4, 5] %e A361088 16 | [5, 2] %e A361088 17 | [2, 6, 2, 6] %e A361088 18 | [6, 2, 6] %e A361088 19 | [2, 6, 4, 4, 2] %e A361088 20 | [6, 4, 4, 2, 8] %e A361088 See the wiki page for proofs. %o A361088 (PARI) signatures=Map(); LIMIT=10^5 /* This search limit should (possibly dynamically, or by hand) be increased as n grows beyond 100. As of today, the value for n=49 is not yet proven. */ %o A361088 A361088_row(n,s=0)={if(!s, s=iferr(mapget(signatures,n),E,[]); #s|| for(L=1,oo, s=concat(s,numdiv(n+L-1)); A361088_row(n,s)|| [mapput(signatures,n,[s,LIMIT]); return(s)]); s[2]>=LIMIT&& return(s[1]); s=s[1]; while(A361088_row(n,s), s=concat(s,numdiv(n+#r))); mapput(signatures,n,[s,LIMIT]); return(s)); my(r=iferr(mapget(signatures,s), E,[])); if(!r, r=[n,n], r[2]<n, r=[r[1],n,n]; mapput(signatures,s,r); return(n), #r>2, return(r[#r-1]), r[#r]>=LIMIT, return); for(j=max(r[2],n)+1,LIMIT, for(k=1,#s, numdiv(j+k-1)!=s[k]&& next(2)); mapput(signatures,s,[n,j,j]); return(j)); mapput(signatures,s,[n,LIMIT])} %Y A361088 Cf. A309981, A327265, A161460, A000005 (tau = numdiv). %K A361088 nonn,tabf %O A361088 1,2 %A A361088 _M. F. Hasler_, Apr 07 2023