This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361094 #15 Mar 14 2023 03:42:00 %S A361094 1,1,9,166,4717,182136,8911549,528571408,36864033945,2956595372416, %T A361094 268116203622961,27128338649300736,3029974270053623941, %U A361094 370289278173654092800,49150116757136815109733,7041536364582774222616576,1083004122024520209576760369 %N A361094 E.g.f. satisfies A(x) = exp( 1/(1 - x * A(x)^3) - 1 ). %H A361094 Winston de Greef, <a href="/A361094/b361094.txt">Table of n, a(n) for n = 0..322</a> %F A361094 a(n) = n! * Sum_{k=0..n} (3*n+1)^(k-1) * binomial(n-1,n-k)/k!. %F A361094 a(n) ~ (5 + sqrt(21))^n * n^(n-1) / (3^(3/4) * 7^(1/4) * 2^n * exp((3 - sqrt(21))/6 + (5 - sqrt(21))*n/2)). - _Vaclav Kotesovec_, Mar 02 2023 %t A361094 Table[n! * Sum[(3*n+1)^(k-1) * Binomial[n-1,n-k]/k!, {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Mar 02 2023 *) %o A361094 (PARI) a(n) = n!*sum(k=0, n, (3*n+1)^(k-1)*binomial(n-1, n-k)/k!); %Y A361094 Cf. A052873, A361093, A361095, A361096, A361097. %Y A361094 Cf. A212917, A361066. %K A361094 nonn %O A361094 0,3 %A A361094 _Seiichi Manyama_, Mar 01 2023