This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361102 #31 Aug 31 2024 12:29:26 %S A361102 1,6,10,12,14,15,18,20,21,22,24,26,28,30,33,34,35,36,38,39,40,42,44, %T A361102 45,46,48,50,51,52,54,55,56,57,58,60,62,63,65,66,68,69,70,72,74,75,76, %U A361102 77,78,80,82,84,85,86,87,88,90,91,92,93,94,95,96,98,99,100,102,104,105,106,108,110,111,112 %N A361102 1 together with numbers having at least two distinct prime factors. %C A361102 This is the union of 1 and A024619. It is the sequence C used in the definition of A360519. Since C is central to the analysis of A360519 it deserves its own entry. %C A361102 This has the same relationship to A024619 as A000469 does to A120944 for squarefree numbers. %H A361102 Michael De Vlieger, <a href="/A361102/b361102.txt">Table of n, a(n) for n = 1..10000</a> %F A361102 From _Peter Luschny_ and _Michael De Vlieger_, May 17 2023: (Start) %F A361102 The sequence is the complement of the prime powers in the positive integers, a = A000027 \ A246655. %F A361102 k is in this sequence <=> k divides lcm(1, 2, ..., k-1). (End) %F A361102 This sequence is {1} U { A120944 U A126706 } = {1} U A024619. - _Michael De Vlieger_, May 17 2023 %p A361102 isa := n -> is(irem(ilcm(seq(1..n-1)), n) = 0): %p A361102 aList := upto -> select(isa, [seq(1..upto)]): %p A361102 aList(112); # _Peter Luschny_, May 17 2023 %t A361102 Select[Range[120], Not@*PrimePowerQ] (* _Michael De Vlieger_, May 17 2023 *) %o A361102 (SageMath) %o A361102 def A361102List(upto: int) -> list[int]: %o A361102 return sorted(Set(1..upto).difference(prime_powers(upto))) %o A361102 print(A361102List(112)) # _Peter Luschny_, May 17 2023 %o A361102 (Python) %o A361102 from sympy import primepi, integer_nthroot %o A361102 def A361102(n): %o A361102 def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) %o A361102 def bisection(f,kmin=0,kmax=1): %o A361102 while f(kmax) > kmax: kmax <<= 1 %o A361102 while kmax-kmin > 1: %o A361102 kmid = kmax+kmin>>1 %o A361102 if f(kmid) <= kmid: %o A361102 kmax = kmid %o A361102 else: %o A361102 kmin = kmid %o A361102 return kmax %o A361102 return bisection(f) # _Chai Wah Wu_, Aug 31 2024 %Y A361102 Cf. A000469, A024619, A120944, A126706, A246655, A360519. %K A361102 nonn %O A361102 1,2 %A A361102 _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 02 2023 %E A361102 Offset set to 1 by _Peter Luschny_, May 17 2023