A361128 Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives L(n).
1, 2, 5, 7, 3, 4, 5, 11, 9, 2, 7, 11, 3, 5, 2, 11, 13, 3, 4, 7, 13, 5, 2, 17, 7, 9, 2, 13, 17, 3, 2, 19, 5, 3, 4, 11, 17, 25, 2, 23, 3, 19, 4, 13, 3, 5, 2, 29, 3, 31, 8, 7, 3, 37, 4, 17, 3, 41, 16, 5, 23, 7, 12, 5, 29, 49, 2, 3, 43, 25, 2, 3, 47, 5, 8, 3, 7, 19, 2, 27, 5, 31
Offset: 2
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 2..20000
Programs
-
Maple
# Suppose bW is a list of the terms of A360519. # Then f3(bW[n-1], bW[n], bW[n+1]); returns [L(n), M(n), R(n)] where: with(numtheory); f3:=proc(a,b,c) local lefta,midb,rightc,i,p,pa,pc,ta,tb,tc,t1,t2; ta:=a; tb:=b; tc:=c; # left t1:=igcd(a,b); t2:=factorset(t1); t2:=convert(t2,list); lefta:=1; for i from 1 to nops(t2) do p:=t2[i]; while (tb mod p) = 0 do lefta:=lefta*p; tb:=tb/p; od; od: # right t1:=igcd(b,c); t2:=factorset(t1); t2:=convert(t2,list); rightc:=1; for i from 1 to nops(t2) do p:=t2[i]; while (tb mod p) = 0 do rightc:=rightc*p; tb:=tb/p; od; od: # middle midb:=b/(lefta*rightc); [lefta,midb,rightc]; end; # N. J. A. Sloane, Mar 09 2023
Comments