cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361129 Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives M(n).

This page as a plain text file.
%I A361129 #17 Mar 09 2023 23:09:42
%S A361129 3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,7,1,1,1,1,
%T A361129 1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U A361129 1,1,11,1,1,11,1,1,1,1,13,1,1,1,1,1,1,9,1,1,1,1,1,1,5,17,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1
%N A361129 Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives M(n).
%C A361129 The p-part of a number k is the highest power of p that divides k. For example, the 2-part of 24 is 8, the 3-part is 3.
%C A361129 Since so many of the initial terms are 1, we show more than the usual number of terms in the DATA section.
%C A361129 Conjecture: All terms are odd, and every odd number eventually appears.
%H A361129 N. J. A. Sloane, <a href="/A361129/b361129.txt">Table of n, a(n) for n = 2..20000</a>
%Y A361129 Cf. A360519, A361118, A361128, A361130.
%K A361129 nonn
%O A361129 2,1
%A A361129 _Scott R. Shannon_, _Rémy Sigrist_, and _N. J. A. Sloane_, Mar 09 2023