cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361130 Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives R(n).

This page as a plain text file.
%I A361130 #9 Mar 09 2023 18:32:05
%S A361130 2,5,7,3,4,5,11,3,2,7,11,9,5,8,11,13,3,8,7,13,5,2,17,7,9,4,13,17,3,2,
%T A361130 19,5,9,16,11,17,5,2,23,3,19,4,13,9,25,2,29,3,31,2,7,3,37,2,17,9,41,2,
%U A361130 5,23,7,12,5,29,7,2,27,43,5,4,3,47,5,2,9,49,19,8,3,5,31,4,43,7
%N A361130 Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives R(n).
%C A361130 The p-part of a number k is the highest power of p that divides k. For example, the 2-part of 24 is 8, the 3-part is 3.
%H A361130 N. J. A. Sloane, <a href="/A361130/b361130.txt">Table of n, a(n) for n = 2..20000</a>
%Y A361130 Cf. A360519, A361118, A361128, A361129.
%K A361130 nonn
%O A361130 2,1
%A A361130 _Scott R. Shannon_, _Rémy Sigrist_, and _N. J. A. Sloane_, Mar 09 2023