cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361132 Multiplicative with a(p^e) = e^4, p prime and e > 0.

This page as a plain text file.
%I A361132 #22 Mar 03 2023 06:45:40
%S A361132 1,1,1,16,1,1,1,81,16,1,1,16,1,1,1,256,1,16,1,16,1,1,1,81,16,1,81,16,
%T A361132 1,1,1,625,1,1,1,256,1,1,1,81,1,1,1,16,16,1,1,256,16,16,1,16,1,81,1,
%U A361132 81,1,1,1,16,1,1,16,1296,1,1,1,16,1,1,1,1296,1,1,16,16
%N A361132 Multiplicative with a(p^e) = e^4, p prime and e > 0.
%C A361132 In general, if the function is multiplicative with a(p^e) = e^k, where k>=1, then Sum_{m=1..n} a(m) ~ c(k) * n, where c(k) = Product_{primes p} (1 + PolyLog(-k, 1/p)) * (1 - 1/p).
%C A361132 Equivalently, c(k) = Product_{primes p} (1 + Sum_{j>=2} (j^k - (j-1)^k) / p^j).
%C A361132 Sum_{m=1..n} A005361(m)^k ~ c(k) * n.
%C A361132 Table of logarithms of the first twenty constants c(k):
%C A361132 log(c1)  =    0.6645400902595784780106197346845697376257107319484837534113838...
%C A361132 log(c2)  =    2.1027190979191945200514651557327047986978773488049101019457040...
%C A361132 log(c3)  =    4.6968549904993458045898305766669061238379561861949323835425304...
%C A361132 log(c4)  =    8.6865032221694100694964858752580123427478996289429265630701524...
%C A361132 log(c5)  =   14.2913129298819954890384122051888143114132125173972994127345117...
%C A361132 log(c6)  =   21.8135511355940060754244319875442802379763506456537810297977335...
%C A361132 log(c7)  =   31.6936244245134941047326145621097555406387768809071583785926496...
%C A361132 log(c8)  =   44.5357450879229051636129496942971942282070021854681649075237793...
%C A361132 log(c9)  =   61.1279313139359633940353674601273793850149492879803908371116076...
%C A361132 log(c10) =   82.5520903493060704390063479960346732401820956158379186266389560...
%C A361132 log(c11) =  110.2954981238150788264027780431082219466660734768697563026966486...
%C A361132 log(c12) =  146.3390378386537094475359791093275236623437203145309460650602987...
%C A361132 log(c13) =  193.3102629498150337396691694808577709247583271151043344733643302...
%C A361132 log(c14) =  254.7562108044458078036208253682699240853829328072028848109791635...
%C A361132 log(c15) =  335.5155584889434205169760027607421364026263435517505529418223175...
%C A361132 log(c16) =  442.1708823748701851244490135727342670822854621013078138839028927...
%C A361132 log(c17) =  583.6971600757633563987486782501478518757572163549653222049269791...
%C A361132 log(c18) =  772.3363960260522276224001927946529683262139600086441840227950538...
%C A361132 log(c19) = 1024.7789861796186438478485897805332932014500908873437888887485298...
%C A361132 log(c20) = 1363.8429394936892771815120584792965902670785987496833459129791344...
%C A361132 Conjecture: log(log(c(k)))/k converges to a constant (around 0.315).
%H A361132 Vaclav Kotesovec, <a href="/A361132/a361132.jpg">Plot of log(log(c(k))) / k, for k = 1..40</a>
%F A361132 a(n) = A005361(n)^4.
%F A361132 Dirichlet g.f.: Product_{primes p} (1 + p^s*(p^(3*s) + 11*p^(2*s) + 11*p^s + 1) / (p^s - 1)^5).
%F A361132 Sum_{k=1..n} a(k) ~ c * n, where c = Product_{primes p} (1 + (15*p^3 + 5*p^2 + 5*p - 1) / (p*(p-1)^4)) = 5922.43654748315227690838901234893132297258444672...
%t A361132 g[p_, e_] := e^4; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
%o A361132 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 4*X + 21*X^2 + X^3 + 6*X^4 - X^5)/(1-X)^5)[n], ", "))
%Y A361132 Cf. A005361, A360969, A360970, A322328, A361148, A361179.
%Y A361132 Cf. A082695 (c1).
%K A361132 nonn,mult
%O A361132 1,4
%A A361132 _Vaclav Kotesovec_, Mar 02 2023, following a suggestion from _Amiram Eldar_