cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361147 a(n) = sigma(n)^3.

Original entry on oeis.org

1, 27, 64, 343, 216, 1728, 512, 3375, 2197, 5832, 1728, 21952, 2744, 13824, 13824, 29791, 5832, 59319, 8000, 74088, 32768, 46656, 13824, 216000, 29791, 74088, 64000, 175616, 27000, 373248, 32768, 250047, 110592, 157464, 110592, 753571, 54872, 216000, 175616
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^3, {n, 1, 50}]
  • PARI
    a(n) = sigma(n)^3;
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X*(2 + 2*p + p^2*X)) / ((1-X)*(1-p*X)*(1-p^2*X)*(1-p^3*X)))[n], ", "))

Formula

Multiplicative with a(p^e) = ((p^(e+1)-1)/(p-1))^3.
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) * Product_{primes p} (1 + 1/p^(2*s-3) + 2/p^(s-1) + 2/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * Pi^6 * zeta(3) * n^4 / 2160, where c = Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 2.83598357433419286770442457158038489640898183...
a(n) = A000578(A000203(n)).