This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361148 #18 Sep 01 2023 04:09:17 %S A361148 1,1,16,16,256,16,1296,256,1296,256,10000,256,20736,1296,4096,4096, %T A361148 65536,1296,104976,4096,20736,10000,234256,4096,160000,20736,104976, %U A361148 20736,614656,4096,810000,65536,160000,65536,331776,20736,1679616,104976,331776,65536,2560000 %N A361148 a(n) = phi(n)^4. %C A361148 In general, for k>=1, Sum_{m=1..n} phi(m)^k ~ c(k) * n^(k+1) / (k+1). %C A361148 Table of the first twenty constants c(k): %C A361148 c1 = 0.6079271018540266286632767792583658334261526480334792930736... %C A361148 c2 = 0.4282495056770944402187657075818235461212985133559361440319... %C A361148 c3 = 0.3371878737915899719616928161521582449491541277581639388802... %C A361148 c4 = 0.2862564715115608911732883400866386479560747005250468681615... %C A361148 c5 = 0.2550316684059564308661179534476184539887434047229867871927... %C A361148 c6 = 0.2342690874743831026992085481001750961630443094403694748409... %C A361148 c7 = 0.2194845388428573186801010214226853865762414525869501954550... %C A361148 c8 = 0.2083553180392308846240883587603960475166426933863125773262... %C A361148 c9 = 0.1996016550942289223053750541784521301740825495040856984950... %C A361148 c10 = 0.1924764951305819663569723926235916851341834741671794581256... %C A361148 c11 = 0.1865198318046079731059147989571847359151227252097897755685... %C A361148 c12 = 0.1814343147960482243026212589426877406632573154701351352790... %C A361148 c13 = 0.1770192204728143035012153190352692532613146649385520287635... %C A361148 c14 = 0.1731338036872585521607716180505314246174563305338731073703... %C A361148 c15 = 0.1696760784770144194638735708052066949428247152918280392147... %C A361148 c16 = 0.1665700322333281768929516390245288052095235102037486400080... %C A361148 c17 = 0.1637576294807392765019551841269187995536332906534705685240... %C A361148 c18 = 0.1611936368897236567526886186599877745065426644021588804182... %C A361148 c19 = 0.1588421683609925408830108209202958349394621277940566066627... %C A361148 c20 = 0.1566743130878534775247182243921577941535243896576096188342... %C A361148 c1 = A059956 = 6/Pi^2, c2 = A065464. %C A361148 Conjecture: c(k)*log(k) converges to a constant (around 0.534). %H A361148 Amiram Eldar, <a href="/A361148/b361148.txt">Table of n, a(n) for n = 1..10000</a> %H A361148 Vaclav Kotesovec, <a href="/A361148/a361148.jpg">Plot of c(k)*log(k), for k = 1..350</a> %F A361148 Multiplicative with a(p^e) = (p-1)^4 * p^(4*e-4). %F A361148 Dirichlet g.f.: zeta(s-4) * Product_{primes p} (1 + 1/p^s - 4/p^(s-1) + 6/p^(s-2) - 4/p^(s-3)). %F A361148 Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = Product_{primes p} (1 - 4/p^2 + 6/p^3 - 4/p^4 + 1/p^5) = 0.286256471511560891173288340086638647956074700525046868161... %F A361148 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^4/((p-1)^4*(p^4-1))) = 2.20815077889083518654... . - _Amiram Eldar_, Sep 01 2023 %t A361148 Table[EulerPhi[n]^4, {n, 1, 50}] %o A361148 (PARI) a(n) = eulerphi(n)^4; %o A361148 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + X - 4*p*X + 6*p^2*X - 4*p^3*X) / (1 - p^4*X))[n], ", ")) %Y A361148 Cf. A000010, A002088, A127473, A057434, A358714, A361132, A361179. %Y A361148 Cf. A059956, A065464. %K A361148 nonn,easy,mult %O A361148 1,3 %A A361148 _Vaclav Kotesovec_, Mar 02 2023