This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361151 #13 Dec 01 2023 15:58:00 %S A361151 2,7,11,29,43,97,137,283,389,749,1003,1839,2421,4259,5515,9391,12011, %T A361151 19887,25143,40665,50931,80679,100161,155847,192051,294047,359839, %U A361151 543127,660623,984239,1190359,1752799,2109119,3072351,3679263,5307023,6327871,9044395 %N A361151 a(n) = K(n-1) + K(n) + K(n+1), where K(n) = A341711(floor(n/2)). %e A361151 n=4: 5+19+19 = 43 = a(4). %p A361151 with(numtheory): %p A361151 b:= proc(n) option remember; nops(invphi(n)) end: %p A361151 g:= proc(n) option remember; `if`(n=0, 1, add( %p A361151 g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n) %p A361151 end: %p A361151 a:= n-> add(g(2*floor((i+n)/2)+1)/2, i=-1..1): %p A361151 seq(a(n), n=0..40); # _Alois P. Heinz_, Mar 02 2023 %t A361151 nmax1 = 40; %t A361151 terms = nmax1 + 2; (* number of terms of A120963 *) %t A361151 nmax2 = Floor[terms/2] - 1; %t A361151 S[m_] := S[m] = CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 1, m*terms}] + O[x]^(terms + 1), x]; %t A361151 S[m = 1]; S[m++]; While[S[m] != S[m - 1], m++]; %t A361151 A120963 = S[m]; %t A361151 A341711[n_ /; 0 <= n <= nmax2] := A120963[[2 n + 2]]/2; %t A361151 K[n_] := A341711[Floor[n/2]]; %t A361151 a[n_] := If[n == 0, 2, K[n - 1] + K[n] + K[n + 1]]; %t A361151 Table[a[n], {n, 0, nmax1}] (* _Jean-François Alcover_, Dec 01 2023 *) %Y A361151 Cf. A341711. %K A361151 nonn %O A361151 0,1 %A A361151 _N. J. A. Sloane_, Mar 02 2023