This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361180 #40 Mar 27 2023 10:44:54 %S A361180 3,5,17,97,193,257,641,769,12289,18433,40961,65537,114689,147457, %T A361180 163841,786433,1179649,5767169,7340033,13631489,23068673,167772161, %U A361180 469762049,2013265921,2281701377,3221225473,3489660929,12348030977,77309411329,206158430209,2061584302081,2748779069441 %N A361180 Primes p such that the odd part of p - 1 is upper-bounded by the dyadic valuation of p - 1. %C A361180 Primes of the form k*2^m + 1 where k <= m and k is odd. - _David A. Corneth_, Mar 03 2023 %C A361180 Primes prime(k) such that A057023(k) <= A023506(k). - _Michel Marcus_, Mar 09 2023 %e A361180 3 is a term because the odd part of 2 is 1, the dyadic valuation of 2 is 1 and 1 <= 1. %e A361180 641 = 5*2^7 + 1 is a term because the odd part of 640 is 5, the dyadic valuation of 640 is 7 and 5 <= 7. %p A361180 # Maple program due to _David A. Corneth_, Mar 03 2023 %p A361180 aList := proc(upto) %p A361180 local i, j, p, R: %p A361180 R := {}: %p A361180 for i from 1 to ilog2(upto) do %p A361180 for j from 1 to min(i, floor(upto/2^i)) do %p A361180 p := j*2^i+1: %p A361180 if isprime(p) then R := `union`(R, {p}): fi: od: od: %p A361180 R: end: %p A361180 aList(10^12); %o A361180 (PARI) isok(p) = if (isprime(p), my(m=valuation(p-1,2)); (p-1)/2^m <= m); \\ _Michel Marcus_, Mar 03 2023 %o A361180 (PARI) upto(n) = {my(res = List()); for(i = 1, logint(n, 2), forstep(j = 1, min(i, n>>i), 2, if(isprime((j<<i) + 1), listput(res, (j<<i) + 1) ) ) ); Set(res) } \\ _David A. Corneth_, Mar 03 2023 %Y A361180 Cf. A000040 (primes), A000265 (odd part), A007814 (dyadic valuation). %Y A361180 Cf. A057023, A023506. %K A361180 nonn %O A361180 1,1 %A A361180 _Lorenzo Sauras Altuzarra_, Mar 03 2023 %E A361180 a(17)..a(27) from _Michel Marcus_, Mar 03 2023 %E A361180 More terms from _David A. Corneth_, Mar 03 2023