cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361180 Primes p such that the odd part of p - 1 is upper-bounded by the dyadic valuation of p - 1.

This page as a plain text file.
%I A361180 #40 Mar 27 2023 10:44:54
%S A361180 3,5,17,97,193,257,641,769,12289,18433,40961,65537,114689,147457,
%T A361180 163841,786433,1179649,5767169,7340033,13631489,23068673,167772161,
%U A361180 469762049,2013265921,2281701377,3221225473,3489660929,12348030977,77309411329,206158430209,2061584302081,2748779069441
%N A361180 Primes p such that the odd part of p - 1 is upper-bounded by the dyadic valuation of p - 1.
%C A361180 Primes of the form k*2^m + 1 where k <= m and k is odd. - _David A. Corneth_, Mar 03 2023
%C A361180 Primes prime(k) such that A057023(k) <= A023506(k). - _Michel Marcus_, Mar 09 2023
%e A361180 3 is a term because the odd part of 2 is 1, the dyadic valuation of 2 is 1 and 1 <= 1.
%e A361180 641 = 5*2^7 + 1 is a term because the odd part of 640 is 5, the dyadic valuation of 640 is 7 and 5 <= 7.
%p A361180 # Maple program due to _David A. Corneth_, Mar 03 2023
%p A361180 aList := proc(upto)
%p A361180    local i, j, p, R:
%p A361180    R := {}:
%p A361180    for i from 1 to ilog2(upto) do
%p A361180       for j from 1 to min(i, floor(upto/2^i)) do
%p A361180          p := j*2^i+1:
%p A361180          if isprime(p) then R := `union`(R, {p}): fi: od: od:
%p A361180    R: end:
%p A361180 aList(10^12);
%o A361180 (PARI) isok(p) = if (isprime(p), my(m=valuation(p-1,2)); (p-1)/2^m <= m); \\ _Michel Marcus_, Mar 03 2023
%o A361180 (PARI) upto(n) = {my(res = List()); for(i = 1, logint(n, 2), forstep(j = 1, min(i, n>>i), 2, if(isprime((j<<i) + 1), listput(res, (j<<i) + 1) ) ) ); Set(res) } \\ _David A. Corneth_, Mar 03 2023
%Y A361180 Cf. A000040 (primes), A000265 (odd part), A007814 (dyadic valuation).
%Y A361180 Cf. A057023, A023506.
%K A361180 nonn
%O A361180 1,1
%A A361180 _Lorenzo Sauras Altuzarra_, Mar 03 2023
%E A361180 a(17)..a(27) from _Michel Marcus_, Mar 03 2023
%E A361180 More terms from _David A. Corneth_, Mar 03 2023