This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361181 #40 Mar 06 2023 10:19:16 %S A361181 2,3,4,5,6,7,8,9,11,12,16,18,24,25,27,32,36,48,49,54,64,72,81,96,101, %T A361181 108,121,125,128,131,144,151,162,181,191,192,216,243,256,288,313,324, %U A361181 343,353,373,383,384,432,486,512,576,625,648,717,727,729,757,768,787,797,864,919,929,972,989 %N A361181 Numbers such that both sum and product of the prime factors (without multiplicity) are palindromic. %C A361181 A002385 (Palindromic primes) is a subsequence of this sequence. %e A361181 2151 is a term because 2151=3^2*239; 3+239=242; 3*239=717. %t A361181 Select[Range[2, 1000], And @@ PalindromeQ /@ {Plus @@ (p = FactorInteger[#][[;; , 1]]), Times @@ p} &] (* _Amiram Eldar_, Mar 06 2023 *) %o A361181 (PARI) ispal(n) = my(d=digits(n)); d == Vecrev(d) \\ A002113 %o A361181 for(n=2,1e5; f=factor(n); sf=0; mf=1;for(j=1,#f~, sf+=f[j,1]; mf*=f[j,1]); if(ispal(sf) && ispal(mf),print1(n,", "))) %o A361181 (Python) %o A361181 from math import prod %o A361181 from sympy import factorint %o A361181 def ispal(n): return (s:=str(n)) == s[::-1] %o A361181 def ok(n): return ispal(sum(f:=factorint(n))) and ispal(prod(f)) %o A361181 print([k for k in range(2, 999) if ok(k)]) # _Michael S. Branicky_, Mar 06 2023 %Y A361181 Cf. A002113 (palindromes), A008472, A007947. %K A361181 nonn,base %O A361181 1,1 %A A361181 _Alexandru Petrescu_, Mar 06 2023