cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361181 Numbers such that both sum and product of the prime factors (without multiplicity) are palindromic.

This page as a plain text file.
%I A361181 #40 Mar 06 2023 10:19:16
%S A361181 2,3,4,5,6,7,8,9,11,12,16,18,24,25,27,32,36,48,49,54,64,72,81,96,101,
%T A361181 108,121,125,128,131,144,151,162,181,191,192,216,243,256,288,313,324,
%U A361181 343,353,373,383,384,432,486,512,576,625,648,717,727,729,757,768,787,797,864,919,929,972,989
%N A361181 Numbers such that both sum and product of the prime factors (without multiplicity) are palindromic.
%C A361181 A002385 (Palindromic primes) is a subsequence of this sequence.
%e A361181 2151 is a term because 2151=3^2*239; 3+239=242; 3*239=717.
%t A361181 Select[Range[2, 1000], And @@ PalindromeQ /@ {Plus @@ (p = FactorInteger[#][[;; , 1]]), Times @@ p} &] (* _Amiram Eldar_, Mar 06 2023 *)
%o A361181 (PARI) ispal(n) = my(d=digits(n)); d == Vecrev(d) \\ A002113
%o A361181 for(n=2,1e5; f=factor(n); sf=0; mf=1;for(j=1,#f~, sf+=f[j,1]; mf*=f[j,1]); if(ispal(sf) && ispal(mf),print1(n,", ")))
%o A361181 (Python)
%o A361181 from math import prod
%o A361181 from sympy import factorint
%o A361181 def ispal(n): return (s:=str(n)) == s[::-1]
%o A361181 def ok(n): return ispal(sum(f:=factorint(n))) and ispal(prod(f))
%o A361181 print([k for k in range(2, 999) if ok(k)]) # _Michael S. Branicky_, Mar 06 2023
%Y A361181 Cf. A002113 (palindromes), A008472, A007947.
%K A361181 nonn,base
%O A361181 1,1
%A A361181 _Alexandru Petrescu_, Mar 06 2023