A361189 Infinite sequence of nonzero integers build the greedy way such that the sums Sum_{i = k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct; each term is minimal in absolute value and in case of a tie, preference is given to the positive value.
1, 2, -1, -4, -3, -6, 4, -11, 5, 6, 7, 8, -8, -12, 9, 21, -10, -13, 12, 25, 13, 16, -14, 31, -15, -17, 19, 33, -19, -21, 22, 41, -22, -24, 24, 49, -25, -26, -27, -28, 28, 34, -29, 61, -30, -31, -33, -34, 35, 39, -35, 75, -36, -37, 38, 77, -38, -39, -41, -42
Offset: 1
Keywords
Examples
The first terms (at the bottom of the tree) alongside the corresponding sums are: 18 --------------------------------- -18 36 ----------------- ----------------- -2 -16 26 10 --------- --------- --------- --------- 3 -5 -9 -7 11 15 -20 30 ----- ----- ----- ----- ----- ----- ----- ----- 1 2 -1 -4 -3 -6 4 -11 5 6 7 8 -8 -12 9 21
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, C++ program
Crossrefs
Cf. A361144.
Comments