cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361200 Product of the left half (exclusive) of the multiset of prime factors of n; a(1) = 0.

This page as a plain text file.
%I A361200 #16 Nov 02 2024 09:13:36
%S A361200 0,1,1,2,1,2,1,2,3,2,1,2,1,2,3,4,1,2,1,2,3,2,1,4,5,2,3,2,1,2,1,4,3,2,
%T A361200 5,4,1,2,3,4,1,2,1,2,3,2,1,4,7,2,3,2,1,6,5,4,3,2,1,4,1,2,3,8,5,2,1,2,
%U A361200 3,2,1,4,1,2,3,2,7,2,1,4,9,2,1,4,5,2,3
%N A361200 Product of the left half (exclusive) of the multiset of prime factors of n; a(1) = 0.
%H A361200 Amiram Eldar, <a href="/A361200/b361200.txt">Table of n, a(n) for n = 1..10000</a>
%F A361200 a(n) * A347044(n) = n.
%F A361200 A361201(n) * A347043(n) = n.
%F A361200 a(n) = Product_{k=1..floor(A001222(n)/2)} A027746(n,k) for n >= 2. - _Amiram Eldar_, Nov 02 2024
%e A361200 The prime factors of 250 are {2,5,5,5}, with left half (exclusive) {2,5}, with product 10, so a(250) = 10.
%t A361200 Table[If[n==1,0,Times@@Take[Join@@ConstantArray@@@FactorInteger[n],Floor[PrimeOmega[n]/2]]],{n,100}]
%t A361200 a[n_] := Module[{p = Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]}, Times @@ p[[1 ;; Floor[Length[p]/2]]]]; a[1] = 0; Array[a, 100] (* _Amiram Eldar_, Nov 02 2024 *)
%Y A361200 Positions of 1's are A000040.
%Y A361200 Positions of 2's are A037143.
%Y A361200 The inclusive version is A347043.
%Y A361200 The right inclusive version A347044.
%Y A361200 The right version is A361201.
%Y A361200 A000005 counts divisors.
%Y A361200 A001221 counts distinct prime factors.
%Y A361200 A006530 gives greatest prime factor.
%Y A361200 A112798 lists prime indices, length A001222, sum A056239.
%Y A361200 A360616 gives half of bigomega (exclusive), inclusive A360617.
%Y A361200 A360673 counts multisets by right sum (exclusive), inclusive A360671.
%Y A361200 First for prime indices, second for partitions, third for prime factors:
%Y A361200 - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y A361200 - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y A361200 - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y A361200 - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y A361200 Cf. A001248, A026424, A027746, A096825, A347045, A347046, A360005.
%K A361200 nonn
%O A361200 1,4
%A A361200 _Gus Wiseman_, Mar 10 2023