cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361201 Product of the right half (exclusive) of the multiset of prime factors of n; a(1) = 0.

This page as a plain text file.
%I A361201 #11 Aug 13 2024 09:10:30
%S A361201 0,1,1,2,1,3,1,2,3,5,1,3,1,7,5,4,1,3,1,5,7,11,1,6,5,13,3,7,1,5,1,4,11,
%T A361201 17,7,9,1,19,13,10,1,7,1,11,5,23,1,6,7,5,17,13,1,9,11,14,19,29,1,15,1,
%U A361201 31,7,8,13,11,1,17,23,7,1,9,1,37,5,19,11,13,1
%N A361201 Product of the right half (exclusive) of the multiset of prime factors of n; a(1) = 0.
%H A361201 Robert Israel, <a href="/A361201/b361201.txt">Table of n, a(n) for n = 1..10000</a>
%F A361201 A361200(n) * A347044(n) = n.
%F A361201 A361201(n) * A347043(n) = n.
%e A361201 The prime factors of 250 are {2,5,5,5}, with right half (exclusive) {5,5}, with product 25, so a(250) = 25.
%p A361201 f:= proc(n) local F;
%p A361201   F:= ifactors(n)[2];
%p A361201   F:= sort(map(t -> t[1]$t[2],F));
%p A361201   convert(F[ceil(nops(F)/2)+1 ..-1],`*`)
%p A361201 end proc:
%p A361201 f(1):= 0:
%p A361201 map(f, [$1..100]); # _Robert Israel_, Aug 12 2024
%t A361201 Table[If[n==1,0,Times@@Take[Join@@ConstantArray@@@FactorInteger[n],-Floor[PrimeOmega[n]/2]]],{n,100}]
%Y A361201 Positions of 1's are A000040.
%Y A361201 Positions of first appearances are A123666.
%Y A361201 The left inclusive version A347043.
%Y A361201 The inclusive version is A347044.
%Y A361201 The left version is A361200.
%Y A361201 A000005 counts divisors.
%Y A361201 A001221 counts distinct prime factors.
%Y A361201 A006530 gives greatest prime factor.
%Y A361201 A112798 lists prime indices, length A001222, sum A056239.
%Y A361201 A360616 gives half of bigomega (exclusive), inclusive A360617.
%Y A361201 A360673 counts multisets by right sum (exclusive), inclusive A360671.
%Y A361201 First for prime indices, second for partitions, third for prime factors:
%Y A361201 - A360676 gives left sum (exclusive), counted by A360672, product A361200.
%Y A361201 - A360677 gives right sum (exclusive), counted by A360675, product A361201.
%Y A361201 - A360678 gives left sum (inclusive), counted by A360675, product A347043.
%Y A361201 - A360679 gives right sum (inclusive), counted by A360672, product A347044.
%Y A361201 Cf. A001248, A026424, A096825, A347045, A347046, A360005.
%K A361201 nonn,look
%O A361201 1,4
%A A361201 _Gus Wiseman_, Mar 10 2023