This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361206 #18 Mar 10 2023 19:38:55 %S A361206 12,1,2,4,18,3,8,20,10,24,5,7,16,30,9,14,32,36,11,13,40,15,42,17,48, %T A361206 19,21,54,22,44,56,50,60,23,25,52,64,66,26,70,72,27,29,34,78,45,80,33, %U A361206 68,84,31,35,88,90,37,38,96,39,41,100,46,102,76,104,108,43,58 %N A361206 Lexicographically earliest infinite sequence of distinct imperfect numbers such that the sum of the abundance of all terms is never < 1. %C A361206 The abundance of each term is A033880(a(n)) and s = Sum_{i=1..n} A033880(a(i)). %C A361206 All imperfect numbers A132999 will appear in this sequence and the abundant numbers A005101 will appear in order. %e A361206 The sequence starts with a(1) = 12, since 12 is the first imperfect number with abundance greater than 0. Then the next term not yet in the sequence, such that s is not less than 1, is 1. %e A361206 a(5) is the next abundant number 18, since any deficient number would bring s below 1. %e A361206 n : 1 2 3 4 5 6 7 8 9 10 %e A361206 a(n): 12 1 2 4 18 3 8 20 10 24 %e A361206 s : 4 3 2 1 4 2 1 3 1 13 %o A361206 (Python) %o A361206 from sympy.ntheory import abundance %o A361206 from itertools import count, filterfalse %o A361206 def A361206_list(nmax): %o A361206 A,s = [],0 %o A361206 for n in range(1,nmax+1): %o A361206 A2 = set(A) %o A361206 for y in filterfalse(A2.__contains__,count(1)): %o A361206 ab = abundance(y) %o A361206 if ab != 0 and ab + s >= 1: %o A361206 A.append(y) %o A361206 s += ab %o A361206 break %o A361206 return(A) %Y A361206 Cf. A005101, A033879, A033880, A132999. %K A361206 nonn,easy %O A361206 1,1 %A A361206 _John Tyler Rascoe_, Mar 04 2023