This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361215 #34 Apr 17 2023 10:58:55 %S A361215 8,20,50,1406,1516,1558,1868,1898,1948,1978,1986,5862,5972,6014,7122, %T A361215 7966,7996,8270,8348,8366,8548,8618,21092,31804,31822,32158,33092, %U A361215 33162,33316,33414,37124,37190,37292,37394,39164,39214,39316,39346,39484,39562,39604,39622,39692,39794,45044,45244 %N A361215 Intersection of A361073 and 2 * A361611. %C A361215 If A361073(j) = 2*A361611(k) then x = 2*A361611(k+1) has the property that x, x - A361073(j) and x + A361073(j) are triprimes, so x >= A361073(j+1), with equality if and only if A361073(j+1) is even. %H A361215 Robert Israel, <a href="/A361215/b361215.txt">Table of n, a(n) for n = 1..2900</a> %e A361215 a(4) = 1406 is a term because 1406 = A361073(20) = 2*A361611(17). %p A361215 A:= {8}: lasta:= 8: %p A361215 for i from 2 to 1000 do %p A361215 for x from lasta+8 do %p A361215 if numtheory:-bigomega(x) = 3 and numtheory:-bigomega(x-lasta) = 3 and numtheory:-bigomega(x+lasta) = 3 then %p A361215 A:= A union {x}; lasta:= x; break %p A361215 fi %p A361215 od od: %p A361215 R:= {8}: lastb:= 4: %p A361215 while 2*lastb < lasta do %p A361215 for x from lastb+4 do %p A361215 if numtheory:-bigomega(x) = 2 and numtheory:-bigomega(x-lastb) = 2 and numtheory:-bigomega(x+lastb) = 2 then %p A361215 if member(2*x,A) then R:= R union {2*x} fi; %p A361215 lastb:= x; break %p A361215 fi %p A361215 od od: %p A361215 sort(convert(R,list)); %Y A361215 Cf. A361073, A361611. %K A361215 nonn %O A361215 1,1 %A A361215 _Zak Seidov_ and _Robert Israel_, Apr 09 2023