cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361216 Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X k rectangle.

This page as a plain text file.
%I A361216 #17 Mar 12 2023 10:45:05
%S A361216 1,1,4,2,11,56,3,29,370,5752,4,94,2666,82310,2519124,6,263,19126,
%T A361216 1232770,88117873,6126859968,12,968,134902,19119198,2835424200
%N A361216 Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X k rectangle.
%C A361216 Tilings that are rotations or reflections of each other are considered distinct.
%C A361216 Pieces can have any combination of integer side lengths, but for the optimal sets computed so far (up to (n,k) = (7,5)), all pieces have one side of length 1.
%F A361216 T(n,1) = A102462(n).
%e A361216 Triangle begins:
%e A361216   n\k|  1    2       3         4            5          6  7  8
%e A361216   ---+--------------------------------------------------------
%e A361216   1  |  1
%e A361216   2  |  1    4
%e A361216   3  |  2   11      56
%e A361216   4  |  3   29     370      5752
%e A361216   5  |  4   94    2666     82310      2519124
%e A361216   6  |  6  263   19126   1232770     88117873 6126859968
%e A361216   7  | 12  968  134902  19119198   2835424200          ?  ?
%e A361216   8  | 20 3416 1026667 307914196 109979838540          ?  ?  ?
%e A361216 A 3 X 3 square can be tiled by three 1 X 2 pieces and three 1 X 1 pieces in the following ways:
%e A361216   +---+---+---+   +---+---+---+   +---+---+---+
%e A361216   |   |   |   |   |   |   |   |   |   |   |   |
%e A361216   +---+---+---+   +   +---+---+   +---+   +---+
%e A361216   |       |   |   |   |   |   |   |   |   |   |
%e A361216   +---+---+   +   +---+---+   +   +---+---+   +
%e A361216   |       |   |   |       |   |   |       |   |
%e A361216   +---+---+---+   +---+---+---+   +---+---+---+
%e A361216 .
%e A361216   +---+---+---+   +---+---+---+   +---+---+---+
%e A361216   |       |   |   |   |   |   |   |   |       |
%e A361216   +---+---+---+   +---+---+   +   +---+---+---+
%e A361216   |   |   |   |   |       |   |   |       |   |
%e A361216   +---+---+   +   +---+---+---+   +---+---+---+
%e A361216   |       |   |   |       |   |   |       |   |
%e A361216   +---+---+---+   +---+---+---+   +---+---+---+
%e A361216 .
%e A361216   +---+---+---+   +---+---+---+
%e A361216   |       |   |   |       |   |
%e A361216   +---+---+---+   +---+---+---+
%e A361216   |       |   |   |   |       |
%e A361216   +---+---+---+   +---+---+---+
%e A361216   |       |   |   |       |   |
%e A361216   +---+---+---+   +---+---+---+
%e A361216 The first six of these have no symmetries, so they account for 8 tilings each. The last two has a mirror symmetry, so they account for 4 tilings each. In total there are 6*8+2*4 = 56 tilings. This is the maximum for a 3 X 3 square, so T(3,3) = 56.
%e A361216 The following table shows the sets of pieces that give the maximum number of tilings up to (n,k) = (7,5). The solutions are unique except for (n,k) = (2,1) and (n,k) = (6,1).
%e A361216       \     Number of pieces of size
%e A361216   (n,k)\  1 X 1 | 1 X 2 | 1 X 3 | 1 X 4
%e A361216   ------+-------+-------+-------+------
%e A361216   (1,1) |   1   |   0   |   0   |   0
%e A361216   (2,1) |   2   |   0   |   0   |   0
%e A361216   (2,1) |   0   |   1   |   0   |   0
%e A361216   (2,2) |   2   |   1   |   0   |   0
%e A361216   (3,1) |   1   |   1   |   0   |   0
%e A361216   (3,2) |   2   |   2   |   0   |   0
%e A361216   (3,3) |   3   |   3   |   0   |   0
%e A361216   (4,1) |   2   |   1   |   0   |   0
%e A361216   (4,2) |   4   |   2   |   0   |   0
%e A361216   (4,3) |   3   |   3   |   1   |   0
%e A361216   (4,4) |   5   |   4   |   1   |   0
%e A361216   (5,1) |   3   |   1   |   0   |   0
%e A361216   (5,2) |   4   |   3   |   0   |   0
%e A361216   (5,3) |   4   |   4   |   1   |   0
%e A361216   (5,4) |   7   |   5   |   1   |   0
%e A361216   (5,5) |   7   |   6   |   2   |   0
%e A361216   (6,1) |   2   |   2   |   0   |   0
%e A361216   (6,1) |   1   |   1   |   1   |   0
%e A361216   (6,2) |   4   |   4   |   0   |   0
%e A361216   (6,3) |   7   |   4   |   1   |   0
%e A361216   (6,4) |   8   |   5   |   2   |   0
%e A361216   (6,5) |  10   |   7   |   2   |   0
%e A361216   (6,6) |  11   |   8   |   3   |   0
%e A361216   (7,1) |   2   |   1   |   1   |   0
%e A361216   (7,2) |   5   |   3   |   1   |   0
%e A361216   (7,3) |   8   |   5   |   1   |   0
%e A361216   (7,4) |  10   |   6   |   2   |   0
%e A361216   (7,5) |  11   |   7   |   2   |   1
%Y A361216 Main diagonal: A361217.
%Y A361216 Columns: A102462 (k = 1), A361218 (k = 2), A361219 (k = 3), A361220 (k = 4).
%Y A361216 Cf. A360629, A361221.
%K A361216 nonn,tabl,more
%O A361216 1,3
%A A361216 _Pontus von Brömssen_, Mar 05 2023