cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361218 Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle.

This page as a plain text file.
%I A361218 #6 Mar 11 2023 08:37:53
%S A361218 1,4,11,29,94,263,968,3416,11520,41912,136972,481388,1743784,6275886,
%T A361218 23615432,93819128,368019576,1367900808,5403282616,19831367476,
%U A361218 76031433360,300581321056,1143307393600,4542840116352,17001097572544,65314285778004,246695766031432
%N A361218 Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle.
%C A361218 Tilings that are rotations or reflections of each other are considered distinct.
%e A361218 The following table shows the sets of pieces that give the maximum number of tilings for n <= 27. The solutions are unique except for n = 1.
%e A361218     \     Number of pieces of size
%e A361218    n \  1 X 1 | 1 X 2 | 1 X 3 | 1 X 4
%e A361218   ----+-------+-------+-------+------
%e A361218    1  |   2   |   0   |   0   |   0
%e A361218    1  |   0   |   1   |   0   |   0
%e A361218    2  |   2   |   1   |   0   |   0
%e A361218    3  |   2   |   2   |   0   |   0
%e A361218    4  |   4   |   2   |   0   |   0
%e A361218    5  |   4   |   3   |   0   |   0
%e A361218    6  |   4   |   4   |   0   |   0
%e A361218    7  |   5   |   3   |   1   |   0
%e A361218    8  |   5   |   4   |   1   |   0
%e A361218    9  |   7   |   4   |   1   |   0
%e A361218   10  |   7   |   5   |   1   |   0
%e A361218   11  |   7   |   6   |   1   |   0
%e A361218   12  |   9   |   6   |   1   |   0
%e A361218   13  |   8   |   6   |   2   |   0
%e A361218   14  |  10   |   6   |   2   |   0
%e A361218   15  |  10   |   7   |   2   |   0
%e A361218   16  |  10   |   6   |   2   |   1
%e A361218   17  |  10   |   7   |   2   |   1
%e A361218   18  |  12   |   7   |   2   |   1
%e A361218   19  |  12   |   8   |   2   |   1
%e A361218   20  |  12   |   9   |   2   |   1
%e A361218   21  |  13   |   8   |   3   |   1
%e A361218   22  |  13   |   9   |   3   |   1
%e A361218   23  |  15   |   9   |   3   |   1
%e A361218   24  |  15   |  10   |   3   |   1
%e A361218   25  |  15   |  11   |   3   |   1
%e A361218   26  |  17   |  11   |   3   |   1
%e A361218   27  |  17   |  12   |   3   |   1
%Y A361218 Second column of A361216.
%Y A361218 Cf. A360631, A361224.
%K A361218 nonn
%O A361218 1,2
%A A361218 _Pontus von Brömssen_, Mar 05 2023