cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361221 Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X k rectangle, up to rotations and reflections.

This page as a plain text file.
%I A361221 #7 Mar 11 2023 08:38:06
%S A361221 1,1,1,1,5,8,2,12,95,719,2,31,682,20600,315107
%N A361221 Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X k rectangle, up to rotations and reflections.
%e A361221 Triangle begins:
%e A361221   n\k|  1  2    3     4      5
%e A361221   ---+------------------------
%e A361221   1  |  1
%e A361221   2  |  1  1
%e A361221   3  |  1  5    8
%e A361221   4  |  2 12   95   719
%e A361221   5  |  2 31  682 20600 315107
%e A361221 A 3 X 3 square can be tiled by one 1 X 3 piece, two 1 X 2 pieces and two 1 X 1 pieces in the following 8 ways:
%e A361221   +---+---+---+   +---+---+---+   +---+---+---+
%e A361221   |   |   |   |   |       |   |   |   |       |
%e A361221   +---+---+   +   +---+---+---+   +---+---+---+
%e A361221   |       |   |   |       |   |   |       |   |
%e A361221   +---+---+---+   +---+---+---+   +---+---+---+
%e A361221   |           |   |           |   |           |
%e A361221   +---+---+---+   +---+---+---+   +---+---+---+
%e A361221 .
%e A361221   +---+---+---+   +---+---+---+   +---+---+---+
%e A361221   |   |   |   |   |   |   |   |   |   |       |
%e A361221   +   +   +---+   +   +---+   +   +   +---+---+
%e A361221   |   |   |   |   |   |   |   |   |   |   |   |
%e A361221   +---+---+---+   +---+---+---+   +---+---+---+
%e A361221   |           |   |           |   |           |
%e A361221   +---+---+---+   +---+---+---+   +---+---+---+
%e A361221 .
%e A361221   +---+---+---+   +---+---+---+
%e A361221   |       |   |   |   |       |
%e A361221   +---+---+---+   +---+---+---+
%e A361221   |           |   |           |
%e A361221   +---+---+---+   +---+---+---+
%e A361221   |       |   |   |       |   |
%e A361221   +---+---+---+   +---+---+---+
%e A361221 This is the maximum for a 3 X 3 square, so T(3,3) = 8. There is one other set of pieces that also can tile the 3 X 3 square in 8 ways: three 1 X 2 pieces and three 1 X 1 pieces (see illustration in A361216).
%e A361221 The following table shows all sets of pieces that give the maximum number of tilings for 1 <= k <= n <= 5:
%e A361221       \     Number of pieces of size
%e A361221   (n,k)\  1 X 1 | 1 X 2 | 1 X 3 | 2 X 2
%e A361221   ------+-------+-------+-------+------
%e A361221   (1,1) |   1   |   0   |   0   |   0
%e A361221   (2,1) |   2   |   0   |   0   |   0
%e A361221   (2,1) |   0   |   1   |   0   |   0
%e A361221   (2,2) |   4   |   0   |   0   |   0
%e A361221   (2,2) |   2   |   1   |   0   |   0
%e A361221   (2,2) |   0   |   2   |   0   |   0
%e A361221   (2,2) |   0   |   0   |   0   |   1
%e A361221   (3,1) |   3   |   0   |   0   |   0
%e A361221   (3,1) |   1   |   1   |   0   |   0
%e A361221   (3,1) |   0   |   0   |   1   |   0
%e A361221   (3,2) |   2   |   2   |   0   |   0
%e A361221   (3,3) |   3   |   3   |   0   |   0
%e A361221   (3,3) |   2   |   2   |   1   |   0
%e A361221   (4,1) |   2   |   1   |   0   |   0
%e A361221   (4,2) |   4   |   2   |   0   |   0
%e A361221   (4,3) |   3   |   3   |   1   |   0
%e A361221   (4,4) |   5   |   4   |   1   |   0
%e A361221   (5,1) |   3   |   1   |   0   |   0
%e A361221   (5,1) |   2   |   0   |   1   |   0
%e A361221   (5,1) |   1   |   2   |   0   |   0
%e A361221   (5,2) |   4   |   3   |   0   |   0
%e A361221   (5,3) |   4   |   4   |   1   |   0
%e A361221   (5,4) |   7   |   5   |   1   |   0
%e A361221   (5,5) |   7   |   6   |   2   |   0
%e A361221 It seems that all optimal solutions for A361216 are also optimal here, but occasionally there are other optimal solutions, e.g. for n = k = 3.
%Y A361221 Main diagonal: A361222.
%Y A361221 Columns: A361223 (k = 1), A361224 (k = 2), A361225 (k = 3).
%Y A361221 Cf. A360629, A361216.
%K A361221 nonn,tabl,more
%O A361221 1,5
%A A361221 _Pontus von Brömssen_, Mar 05 2023