cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361224 Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle, up to rotations and reflections.

This page as a plain text file.
%I A361224 #6 Mar 11 2023 08:38:21
%S A361224 1,1,5,12,31,86,242,854,2888,10478,34264,120347
%N A361224 Maximum number of ways in which a set of integer-sided rectangular pieces can tile an n X 2 rectangle, up to rotations and reflections.
%e A361224 A 4 X 2 rectangle can be tiled by two 1 X 2 pieces and four 1 X 1 pieces in the following 12 ways:
%e A361224   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+
%e A361224   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |
%e A361224   +---+---+   +---+---+   +---+---+   +   +---+   +---+---+   +---+---+
%e A361224   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |
%e A361224   +---+---+   +   +---+   +---+---+   +---+---+   +---+---+   +---+---+
%e A361224   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
%e A361224   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +   +   +
%e A361224   |       |   |       |   |       |   |       |   |       |   |   |   |
%e A361224   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+
%e A361224 .
%e A361224   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+
%e A361224   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
%e A361224   +---+---+   +---+---+   +   +---+   +---+   +   +---+---+   +---+---+
%e A361224   |   |   |   |       |   |   |   |   |   |   |   |       |   |   |   |
%e A361224   +---+   +   +---+---+   +---+---+   +---+---+   +---+---+   +   +   +
%e A361224   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |
%e A361224   +   +---+   +   +---+   +   +---+   +   +---+   +---+---+   +---+---+
%e A361224   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
%e A361224   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+   +---+---+
%e A361224 This is the maximum for a 4 X 2 rectangle, so a(4) = 12.
%e A361224 The following table shows the sets of pieces that give the maximum number of tilings for n <= 12. The solutions are unique except for n <= 2.
%e A361224     \     Number of pieces of size
%e A361224    n \  1 X 1 | 1 X 2 | 1 X 3 | 2 X 2
%e A361224   ----+-------+-------+-------+------
%e A361224    1  |   2   |   0   |   0   |   0
%e A361224    1  |   0   |   1   |   0   |   0
%e A361224    2  |   4   |   0   |   0   |   0
%e A361224    2  |   2   |   1   |   0   |   0
%e A361224    2  |   0   |   2   |   0   |   0
%e A361224    2  |   0   |   0   |   0   |   1
%e A361224    3  |   2   |   2   |   0   |   0
%e A361224    4  |   4   |   2   |   0   |   0
%e A361224    5  |   4   |   3   |   0   |   0
%e A361224    6  |   4   |   4   |   0   |   0
%e A361224    7  |   5   |   3   |   1   |   0
%e A361224    8  |   5   |   4   |   1   |   0
%e A361224    9  |   7   |   4   |   1   |   0
%e A361224   10  |   7   |   5   |   1   |   0
%e A361224   11  |   7   |   6   |   1   |   0
%e A361224   12  |   9   |   6   |   1   |   0
%e A361224 It seems that all optimal solutions for A361218 are also optimal here, but for n = 2 there are other optimal solutions.
%Y A361224 Second column of A361221.
%Y A361224 Cf. A361218, A360631.
%K A361224 nonn,more
%O A361224 1,3
%A A361224 _Pontus von Brömssen_, Mar 05 2023