This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361239 #13 Mar 11 2023 00:13:49 %S A361239 1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,4,7,1,1,1,1,6,19,28,1,1,1,1,7,35, %T A361239 124,108,1,1,1,1,9,57,349,931,507,1,1,1,1,10,85,737,3766,7801,2431,1, %U A361239 1,1,1,12,117,1359,10601,45632,68685,12441,1 %N A361239 Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation and reflection. %H A361239 Andrew Howroyd, <a href="/A361239/b361239.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals). %H A361239 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cactus_graph">Cactus graph</a>. %H A361239 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>. %F A361239 T(0,k) = T(1,k) = T(2,k) = 1. %F A361239 T(2*n,k) = (A361236(2*n,k) + binomial((2*k-1)*n + 1, n)/((2*k-1)*n + 1))/2. %F A361239 T(2*n+1,k) = (A361236(2*n+1,k) + k*binomial((2*k-1)*n + k, n)/((2*k-1)*n + k))/2. %e A361239 Array begins: %e A361239 =================================================== %e A361239 n\k | 1 2 3 4 5 6 ... %e A361239 ----+---------------------------------------------- %e A361239 0 | 1 1 1 1 1 1 ... %e A361239 1 | 1 1 1 1 1 1 ... %e A361239 2 | 1 1 1 1 1 1 ... %e A361239 3 | 1 3 4 6 7 9 ... %e A361239 4 | 1 7 19 35 57 85 ... %e A361239 5 | 1 28 124 349 737 1359 ... %e A361239 6 | 1 108 931 3766 10601 24112 ... %e A361239 7 | 1 507 7801 45632 167741 471253 ... %e A361239 8 | 1 2431 68685 580203 2790873 9678999 ... %e A361239 9 | 1 12441 630850 7687128 48300850 206780448 ... %e A361239 ... %o A361239 (PARI) \\ R(n,k) gives A361236. %o A361239 u(n,k,r) = {r*binomial(n*(2*k-1) + r, n)/(n*(2*k-1) + r)} %o A361239 R(n,k) = {if(n==0, 1, u(n, k, 1)/((k-1)*n+1) + sumdiv(gcd(k,n-1), d, if(d>1, eulerphi(d)*u((n-1)/d, k, 2*k/d)/k)))} %o A361239 T(n, k) = {(R(n, k) + u(n\2, k, if(n%2, k, 1)))/2} %Y A361239 Columns 1..4 are A000012, A296533, A361240, A361241. %Y A361239 Row n=3 is A032766. %Y A361239 Cf. A361236, A361243. %K A361239 nonn,tabl %O A361239 0,14 %A A361239 _Andrew Howroyd_, Mar 06 2023