This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361242 #11 Mar 11 2023 00:13:31 %S A361242 1,1,1,2,7,26,144,800,4995,32176,215914,1486270,10471534,75137664, %T A361242 547756650,4047212142,30255934851,228513227318,1741572167716, %U A361242 13380306774014,103542814440878,806476983310180,6318519422577854,49769050291536486,393933908000862866 %N A361242 Number of nonequivalent noncrossing cacti with n nodes up to rotation. %C A361242 A noncrossing cactus is a connected noncrossing graph (A007297) that is a cactus graph (a tree of edges and polygons). %C A361242 Since every cactus is an outerplanar graph, every cactus has at least one drawing as a noncrossing graph. %H A361242 Andrew Howroyd, <a href="/A361242/b361242.txt">Table of n, a(n) for n = 0..500</a> %H A361242 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cactus_graph">Cactus graph</a>. %H A361242 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>. %e A361242 The a(3) = 2 nonequivalent cacti have the following blocks: %e A361242 {{1,2}, {1,3}}, %e A361242 {{1,2,3}}. %e A361242 Graphically these can be represented: %e A361242 1 1 %e A361242 / \ / \ %e A361242 2 3 2----3 %e A361242 . %e A361242 The a(4) = 7 nonequivalent cacti have the following blocks: %e A361242 {{1,2}, {1,3}, {1,4}}, %e A361242 {{1,2}, {1,3}, {3,4}}, %e A361242 {{1,2}, {1,4}, {2,3}}, %e A361242 {{1,2}, {2,4}, {3,4}}, %e A361242 {{1,2}, {1,3,4}}, %e A361242 {{1,2}, {2,3,4}}, %e A361242 {{1,2,3,4}}. %e A361242 Graphically these can be represented: %e A361242 1---4 1 4 1---4 1 4 %e A361242 | \ | \ | | | / | %e A361242 2 3 2 3 2---3 2 3 %e A361242 . %e A361242 1---4 1 4 1---4 %e A361242 | \ | | / | | | %e A361242 2 3 2---3 2---3 %o A361242 (PARI) \\ Here F(n) is the g.f. of A003168. %o A361242 F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))} %o A361242 seq(n) = {my(f=F(n-1)); Vec(1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)} %Y A361242 Cf. A003168, A007297, A361236, A361243. %K A361242 nonn %O A361242 0,4 %A A361242 _Andrew Howroyd_, Mar 07 2023