This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361243 #8 Mar 11 2023 00:13:26 %S A361243 1,1,1,2,5,17,79,421,2537,16214,108204,743953,5237414,37574426, %T A361243 273889801,2023645764,15128049989,114256903169,870786692493, %U A361243 6690155544157,51771411793812,403238508004050,3159259746188665,24884525271410389,196966954270163612 %N A361243 Number of nonequivalent noncrossing cacti with n nodes up to rotation and reflection. %C A361243 A noncrossing cactus is a connected noncrossing graph (A007297) that is a cactus graph (a tree of edges and polygons). %H A361243 Andrew Howroyd, <a href="/A361243/b361243.txt">Table of n, a(n) for n = 0..500</a> %H A361243 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cactus_graph">Cactus graph</a>. %H A361243 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>. %e A361243 The a(4) = 5 nonequivalent cacti have the following blocks: %e A361243 {{1,2}, {1,3}, {1,4}}, %e A361243 {{1,2}, {1,3}, {3,4}}, %e A361243 {{1,2}, {1,4}, {2,3}}, %e A361243 {{1,2}, {1,3,4}}, %e A361243 {{1,2,3,4}}. %e A361243 Graphically these can be represented: %e A361243 1---4 1 4 1---4 1---4 1---4 %e A361243 | \ | \ | | | \ | | | %e A361243 2 3 2 3 2---3 2 3 2---3 %o A361243 (PARI) \\ Here F(n) is the g.f. of A003168. %o A361243 F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))} %o A361243 seq(n) = {my(f=F(n-1)); Vec(1/(1 - x*subst(f + O(x^(n\2+1)), x, x^2)) + 1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)/2} %Y A361243 Cf. A003168, A007297, A361239, A361242. %K A361243 nonn %O A361243 0,4 %A A361243 _Andrew Howroyd_, Mar 07 2023