This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361246 #34 Jun 21 2023 06:47:14 %S A361246 2,2,3,4,16,25,36,120,505,721,2520,2520,41041,83161,83161,196560, %T A361246 524161,524161,3160080,3160080,3160080,3160080,68468401,68468401, %U A361246 68468401,68468401,4724319601,4724319601,26702676000,26702676000 %N A361246 a(n) is the smallest integer k > 1 that satisfies k mod j <= 1 for all integers j in 1..n. %H A361246 Chai Wah Wu, <a href="/A361246/b361246.txt">Table of n, a(n) for n = 1..112</a> %F A361246 a(n) = A064219(n)+1. - _Chai Wah Wu_, Jun 19 2023 %e A361246 a(7)=36 since 36 mod 7 = 1, 36 mod 6 = 0, 36 mod 5 = 1, 36 mod 4 = 0, 36 mod 3 = 0, 36 mod 2 = 0, 36 mod 1 = 0 and 36 is the smallest integer greater than 1 where all of these remainders are 1 or less. %o A361246 (Python) %o A361246 final=100 %o A361246 k=2 %o A361246 for n in range(1, final+1): %o A361246 j = n+1 %o A361246 while (j > 1): %o A361246 j -= 1 %o A361246 if k%j>1: %o A361246 k += j-(k%j) %o A361246 j = n+1 %o A361246 print(k) %o A361246 (Python) %o A361246 from math import lcm %o A361246 from itertools import product %o A361246 from sympy.ntheory.modular import solve_congruence %o A361246 def A361246(n): %o A361246 if n == 1: return 2 %o A361246 alist, blist, c, klist = [], [], 1, list(range(n,1,-1)) %o A361246 while klist: %o A361246 k = klist.pop(0) %o A361246 if not c%k: %o A361246 blist.append(k) %o A361246 else: %o A361246 c = lcm(c,k) %o A361246 alist.append(k) %o A361246 for m in klist.copy(): %o A361246 if not k%m: %o A361246 klist.remove(m) %o A361246 for d in product([0,1],repeat=len(alist)): %o A361246 x = solve_congruence(*list(zip(d,alist))) %o A361246 if x is not None: %o A361246 y = x[0] %o A361246 if y > 1: %o A361246 for b in blist: %o A361246 if y%b > 1: %o A361246 break %o A361246 else: %o A361246 if y < c: %o A361246 c = y %o A361246 return int(c) # _Chai Wah Wu_, Jun 19 2023 %o A361246 (PARI) isok(k, n) = for (j=1, n, if ((k % j) > 1, return(0))); return(1); %o A361246 a(n) = my(k=2); while(!isok(k, n), k++); k; \\ _Michel Marcus_, Mar 17 2023 %Y A361246 Cf. A003418 (all remainders 0). %Y A361246 Cf. A064219, A361247, A361248. %K A361246 nonn %O A361246 1,1 %A A361246 _Andrew Cogliano_, Mar 05 2023