This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361253 #24 Mar 17 2023 13:17:57 %S A361253 0,1,2,3,2,5,6,7,8,3,10,11,12,13,14,15,2,17,18,19,20,21,22,23,24,5,26, %T A361253 27,28,29,30,31,32,33,34,35,6,37,38,39,40,41,42,43,44,45,46,47,48,7, %U A361253 50,51,52,53,54,55,56,57,58,59,60,61,62,63,8,65,66,67,68 %N A361253 If n = m^2 for some m > 1 then a(n) = a(m), otherwise a(n) = n. %C A361253 All terms belong to A000037 U { 0, 1 }. %C A361253 All terms of A000037 appear infinitely many times. %C A361253 This sequence can be seen as the limit of the k-th iterate of A097448 as k tends to infinity. %H A361253 Michael De Vlieger, <a href="/A361253/b361253.txt">Table of n, a(n) for n = 0..10000</a> %F A361253 a(a(n)) = a(n). %F A361253 a(n) <= A097448(n). %F A361253 a(n) = 2 iff n belongs to A001146. %F A361253 a(n) = 3 iff n belongs to A011764. %F A361253 a(n) = 5 iff n belongs to A176594. %e A361253 a(9) = a(3^2) = a(3) = 3 (as 3 is not a square). %t A361253 nn = 120; Array[Set[a[#], #] &, 2, 0]; Do[If[IntegerQ[#], Set[k, a[#]], Set[k, n]] &[Sqrt[n]]; Set[a[n], k], {n, nn}]; Array[a, nn] (* _Michael De Vlieger_, Mar 06 2023 *) %o A361253 (PARI) a(n) = my (m); { while (n > 1 && issquare(n, &m), n = m); return (n) } %o A361253 (Python) %o A361253 from sympy import integer_nthroot %o A361253 def A361253(n): %o A361253 if n <= 1: %o A361253 return n %o A361253 a, b = integer_nthroot(c:=n,2) %o A361253 while b: %o A361253 a, b = integer_nthroot(c:=a,2) %o A361253 return c # _Chai Wah Wu_, Mar 17 2023 %Y A361253 Cf. A000037, A001146, A011764, A176594, A097448. %K A361253 nonn,easy %O A361253 0,3 %A A361253 _Rémy Sigrist_, Mar 06 2023