This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361254 #34 Mar 28 2023 15:29:48 %S A361254 1,1,3,70,19355,66462606,2977635137862,1803595358964773088, %T A361254 15138592322753242235338875,1793196665025885172290508971592750, %U A361254 3040059281615704147007085764679679740691838,74597015246986083384362428357508730776063716190667288,26737694395324301026230134763403079891362936970900741153038680278 %N A361254 Number of n-regular graphs on 2*n labeled nodes. %C A361254 These graphs share the same degree sequence as the complete bipartite graphs K(n,n). %H A361254 Atabey Kaygun, <a href="https://kaygun.tumblr.com/post/637867244800573440/counting-graphs-with-a-prescribed-degree-sequence">Counting Graphs with a Prescribed Degree Sequence</a> %H A361254 Atabey Kaygun, <a href="https://arxiv.org/abs/2101.02299">Enumerating Labeled Graphs that Realize a Fixed Degree Sequence</a>, arXiv:2101.02299 [math.CO], 2021. %F A361254 a(n) = A059441(2*n, n). %o A361254 (Common Lisp) ; See Links in A339847 for the graph-count function. %o A361254 (defun A361254 (n) %o A361254 (graph-count (loop repeat (* 2 n) collect n))) %o A361254 (PARI) \\ See Links in A295193 for GraphsByDegreeSeq. %o A361254 a(n)={if(n==0, 1, vecsum(GraphsByDegreeSeq(2*n, n, (p, r)->valuation(p,x) >= n-r)[, 2])) } \\ _Andrew Howroyd_, Mar 06 2023 %Y A361254 Cf. A001223, A059441, A339987, A360437. %K A361254 nonn %O A361254 0,3 %A A361254 _Atabey Kaygun_, Mar 06 2023 %E A361254 a(11)-a(12) from _Andrew Howroyd_, Mar 06 2023