cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361255 Triangle read by rows: row n lists the exponential unitary divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 48, 7, 49, 10, 50, 51, 26, 52, 53, 6, 54, 55, 14, 56, 57, 58, 59
Offset: 1

Views

Author

R. J. Mathar, Mar 06 2023

Keywords

Comments

Starts to differ from A322791 in row n=16, where 4 is an exponential divisor but not an exponential unitary divisor.

Crossrefs

Cf. A322857 (row sums), A278908 (row lengths), A322791 (includes non-unitary exp divs).

Programs

  • Maple
    A361255 := proc(n)
        local expundivs ,d,isue,p,ai,bi;
        expudvs := {} ;
        for d in numtheory[divisors](n) do
            isue := true ;
            for p in numtheory[factorset](n) do
                ai := padic[ordp](n,p) ;
                bi := padic[ordp](d,p) ;
                if bi > 0 then
                    if modp(ai,bi) <>0 or igcd(bi,ai/bi) <> 1 then
                        isue := false;
                    end if;
                else
                    isue := false ;
                end if;
            end do;
            if isue then
                expudvs := expudvs union {d} ;
            end if;
        end do:
        sort(expudvs) ;
    end proc:
    seq(op(A361255(n)),n=1..60) ;
  • Mathematica
    udivQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m] && CoprimeQ[m, n/m]);
    expuDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[udivQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; expuDivs[1] = {1};
    expuDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expuDivQ[n, #] &]];
    Table[expuDivs[n], {n, 1, 70}] // Flatten (* Amiram Eldar, Mar 11 2023 *)