A361255 Triangle read by rows: row n lists the exponential unitary divisors of n.
1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 48, 7, 49, 10, 50, 51, 26, 52, 53, 6, 54, 55, 14, 56, 57, 58, 59
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..15331 (first 10000 rows, flattened)
- Nicuşor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35 (2011), pp. 205-216.
Programs
-
Maple
A361255 := proc(n) local expundivs ,d,isue,p,ai,bi; expudvs := {} ; for d in numtheory[divisors](n) do isue := true ; for p in numtheory[factorset](n) do ai := padic[ordp](n,p) ; bi := padic[ordp](d,p) ; if bi > 0 then if modp(ai,bi) <>0 or igcd(bi,ai/bi) <> 1 then isue := false; end if; else isue := false ; end if; end do; if isue then expudvs := expudvs union {d} ; end if; end do: sort(expudvs) ; end proc: seq(op(A361255(n)),n=1..60) ;
-
Mathematica
udivQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m] && CoprimeQ[m, n/m]); expuDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[udivQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; expuDivs[1] = {1}; expuDivs[n_] := Module[{d = Rest[Divisors[n]]}, Select[d, expuDivQ[n, #] &]]; Table[expuDivs[n], {n, 1, 70}] // Flatten (* Amiram Eldar, Mar 11 2023 *)
Comments