This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361262 #30 Feb 02 2025 04:28:39 %S A361262 3238,4162,4537,13918,16837,17857,18673,24553,55477,62353,78457,84358, %T A361262 92878,102838,106813,129838,135853,140002,142822,146722,148318,151957, %U A361262 166177,180013,184213,187933,194338,210637,214393,231757,242698,271198,274393,305677 %N A361262 Numbers k such that k+i^2, i=0..6 are all semiprimes. %e A361262 3238 is a term because 3238=2*1619; 3239=41*79; 3242=2*1621; 3247=17*191; 3254=2*1627; 3263=13*251; 3274=2*1637. %p A361262 q:= n-> andmap(x-> numtheory[bigomega](x)=2, [n+i^2$i=0..6]): %p A361262 select(q, [$1..400000])[]; # _Alois P. Heinz_, Mar 06 2023 %t A361262 okQ[k_] := AllTrue[Table[k+i^2, {i, 0, 6}], PrimeOmega[#] == 2&]; %t A361262 Select[Range[400000], okQ] (* _Jean-François Alcover_, Feb 02 2025 *) %o A361262 (PARI) isok(k) = sum(i=0, 6, bigomega(k+i^2)==2) == 7; %Y A361262 Subsequence of A070552. %Y A361262 Cf. A001358 (semiprimes). %K A361262 nonn %O A361262 1,1 %A A361262 _Alexandru Petrescu_, Mar 06 2023