cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361262 Numbers k such that k+i^2, i=0..6 are all semiprimes.

This page as a plain text file.
%I A361262 #30 Feb 02 2025 04:28:39
%S A361262 3238,4162,4537,13918,16837,17857,18673,24553,55477,62353,78457,84358,
%T A361262 92878,102838,106813,129838,135853,140002,142822,146722,148318,151957,
%U A361262 166177,180013,184213,187933,194338,210637,214393,231757,242698,271198,274393,305677
%N A361262 Numbers k such that k+i^2, i=0..6 are all semiprimes.
%e A361262 3238 is a term because 3238=2*1619; 3239=41*79; 3242=2*1621; 3247=17*191; 3254=2*1627; 3263=13*251; 3274=2*1637.
%p A361262 q:= n-> andmap(x-> numtheory[bigomega](x)=2, [n+i^2$i=0..6]):
%p A361262 select(q, [$1..400000])[];  # _Alois P. Heinz_, Mar 06 2023
%t A361262 okQ[k_] := AllTrue[Table[k+i^2, {i, 0, 6}], PrimeOmega[#] == 2&];
%t A361262 Select[Range[400000], okQ] (* _Jean-François Alcover_, Feb 02 2025 *)
%o A361262 (PARI) isok(k) = sum(i=0, 6, bigomega(k+i^2)==2) == 7;
%Y A361262 Subsequence of A070552.
%Y A361262 Cf. A001358 (semiprimes).
%K A361262 nonn
%O A361262 1,1
%A A361262 _Alexandru Petrescu_, Mar 06 2023