cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361269 Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.

This page as a plain text file.
%I A361269 #28 Mar 16 2023 04:50:52
%S A361269 1,0,2,0,4,12,0,144,168,200,0,25696,18768,12384,8688,0,18082560,
%T A361269 8697280,3923040,1914560,936992,0,47025585664,14670384000,4512045120,
%U A361269 1622358720,647087040,242016192,0,450955726792704,87781550054912,17679638000640,4496696041600,1408276410240,482302375296,145763745920
%N A361269 Triangular array read by rows. T(n,k) is the number of binary relations on [n] containing exactly k strongly connected components, n >= 0, 0 <= k <= n.
%H A361269 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%H A361269 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
%H A361269 Wikipedia, <a href="https://en.wikipedia.org/wiki/Strongly_connected_component">Strongly connected component</a>
%F A361269 E.g.f. for column 1: A(2*x) where A(x) is the e.g.f. for A003030.
%F A361269 E.g.f. for main diagonal: B(2*x) where B(x) is the e.g.f. for A003024.
%e A361269   1;
%e A361269   0,     2;
%e A361269   0,     4,    12;
%e A361269   0,   144,   168,   200;
%e A361269   0, 25696, 18768, 12384, 8688;
%e A361269   ...
%t A361269 nn =15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
%t A361269    Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; begf = Total[CoefficientList[ Series[1/(Total[CoefficientList[Series[ Exp[-u *s[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}],z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]] /. z -> 2 z;
%t A361269 Range[0, nn]! CoefficientList[begf, {z, u}] // Grid (* _Geoffrey Critzer_, Mar 14 2023 after Andrew Howroyd *)
%o A361269 (PARI)
%o A361269 Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
%o A361269 G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
%o A361269 U(e, p)={Z(p, k->e^(k*(k-1)/2))}
%o A361269 RelEgf(n, e)={sum(k=0, n, e^(k^2)*x^k/k!, O(x*x^n) )}
%o A361269 T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, RelEgf(n, e)))))))))]}
%o A361269 { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Mar 06 2023
%Y A361269 Cf. A003030, A003024, A002416 (row sums).
%K A361269 nonn,tabl
%O A361269 0,3
%A A361269 _Geoffrey Critzer_, Mar 06 2023
%E A361269 Terms a(15) and beyond from _Andrew Howroyd_, Mar 06 2023