This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361277 #14 Mar 07 2023 10:37:15 %S A361277 1,1,1,1,1,1,1,1,3,1,1,1,5,7,1,1,1,7,19,25,1,1,1,9,37,97,81,1,1,1,11, %T A361277 61,241,581,331,1,1,1,13,91,481,1981,3661,1303,1,1,1,15,127,841,4881, %U A361277 17551,26335,5937,1,1,1,17,169,1345,10001,55321,171697,202049,26785,1 %N A361277 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..n} binomial(k*j,n-j)/j!. %F A361277 E.g.f. of column k: exp(x * (1+x)^k). %F A361277 T(0,k) = 1; T(n,k) = (n-1)! * Sum_{j=1..n} j * binomial(k,j-1) * T(n-j,k)/(n-j)!. %e A361277 Square array begins: %e A361277 1, 1, 1, 1, 1, 1, ... %e A361277 1, 1, 1, 1, 1, 1, ... %e A361277 1, 3, 5, 7, 9, 11, ... %e A361277 1, 7, 19, 37, 61, 91, ... %e A361277 1, 25, 97, 241, 481, 841, ... %e A361277 1, 81, 581, 1981, 4881, 10001, ... %o A361277 (PARI) T(n, k) = n!*sum(j=0, n, binomial(k*j, n-j)/j!); %Y A361277 Columns k=0..4 give A000012, A047974, A361278, A361279, A361280. %Y A361277 Main diagonal gives A361281. %Y A361277 Cf. A293012. %K A361277 nonn,tabl %O A361277 0,9 %A A361277 _Seiichi Manyama_, Mar 06 2023