cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361282 Number of rank n+1 simple connected series-parallel matroids on [2n].

This page as a plain text file.
%I A361282 #18 Mar 09 2023 20:03:59
%S A361282 0,1,75,9345,1865745,554479695,231052877055,128938132548225,
%T A361282 92986310399407425,84250567868935042575,93744545254140599193375,
%U A361282 125717783386887888296925825,200041202339679732328342670625,372688996228146502285257581079375,803768398459351988653830600415029375
%N A361282 Number of rank n+1 simple connected series-parallel matroids on [2n].
%H A361282 Luis Ferroni and Matt Larson, <a href="https://arxiv.org/abs/2303.02253">Kazhdan-Lusztig polynomials of braid matroids</a>, arXiv:2303.02253 [math.CO], 2023.
%e A361282 For n=2 the a(2) = 1 rank 3 simple connected series-parallel matroid on [4] is the uniform matroid of rank 3.
%o A361282 (PARI) a(n) = T(2*n)[2*n][n+1] \\ T(n) defined in A361355. - _Andrew Howroyd_, Mar 09 2023
%Y A361282 Cf. A034941, A361355.
%K A361282 nonn
%O A361282 1,3
%A A361282 _Matt Larson_, Mar 06 2023
%E A361282 Terms a(10)-a(15) from _Andrew Howroyd_, Mar 09 2023