This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361286 #17 Apr 09 2023 02:31:00 %S A361286 1,2,6,18,50,138,430,1242,3666,10938,34598,108098,338634,1058370 %N A361286 Total over all partitions lambda of n, of factors of s_lambda in the skew Schur function s_( nu/lambda ) with (s_lambda)^2 = Sum( C(nu, lambda, lambda) s_nu ). %C A361286 All the terms for n >= 1 so far are twice an odd integer. %C A361286 In terms of Young diagrams, this counts how many original copies one gets by first adding n boxes and then removing n boxes while maintaining an allowed Young diagram shape. %C A361286 Also a(n) is the total over all partitions n of the multiplicities squared, partition by partition, in the LR-expansion of (s_lambda |- n)^2. Notice that this is different from A067855 where the multipliciteis are first summed over all lambda |-n, and finally squared, then summed. %e A361286 For n=3, %e A361286 {3} -> 4 s_{3} + 2 s_{2,1} %e A361286 {2,1} -> 4 s_{3} + 10 s_{2,1} + 4 s_{1,1,1} and %e A361286 {1,1,1} -> 2 s_{2,1} + 4 s_{1,1,1} %e A361286 so a(3) = 4 + 10 + 4 = 18. %e A361286 Also, %e A361286 s(3)^2 -> s(6)+s(3;3)+s(4;2)+s(5,1) -> {1,1,1,1} ->{1,1,1,1} ->4 %e A361286 s(2;1)^2 ->s(4;2)+s(4;1;1)+s(3;3)+2 s(3;2;1)+s(3;1;1;1)+s(2;2;2)+s(2;2;1;1) %e A361286 -> {1,1,1,2,1,1,1} -> {1,1,1,4,1,1,1} -> 10 %e A361286 s(1;1;1)^2 -> s(2;2;2)+s(2;2;1;1)+s(2;1;1;1;1)+s(1^6) ->{1,1,1,1} ->{1,1,1,1} ->4 %t A361286 (* with 'LRRule' and 'skewschur' defined in http://users.telenet.be/Wouter.Meeussen/ToolBox.nb *) %t A361286 Tr/@ Table[Coefficient[ %t A361286 Total[skewschur[#, \[Lambda], n] & /@ %t A361286 LRRule[\[Lambda], \[Lambda]]], ss[\[Lambda], n] ], {n, %t A361286 13}, {\[Lambda], Partitions[n]}]; %t A361286 also Table[Total[ %t A361286 Table[Map[Last, Tally[LRRule[\[Lambda], \[Lambda]]] ]^2, {\[Lambda], %t A361286 Partitions[n]}], 2], {n, 13}]; %Y A361286 Cf. A067855, A322210. %K A361286 nonn,more,hard %O A361286 0,2 %A A361286 _Wouter Meeussen_, Mar 07 2023