This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361300 #16 Mar 29 2023 21:39:52 %S A361300 5,8,10,13,18,20,25,26,29,34,40,41,45,50,53,58,61,65,68,73,74,85,89, %T A361300 90,98,104,106,109,113,122,125,130,137,146,148,149,153,157,169,170, %U A361300 173,178,185,193,194,200,202,205,218,221,229,233,234,242 %N A361300 Numbers of the form m^2 + p^2 for p prime and m > 0. %C A361300 Rieger proves that there are >> x/log x terms of this sequence up to x, and together with the trivial upper bound << x/log x this shows that a(n) ≍ n log n. (Rieger does not prove that a(n) ~ n log n, the constant factor may be larger.) %H A361300 Charles R Greathouse IV, <a href="/A361300/b361300.txt">Table of n, a(n) for n = 1..10000</a> %H A361300 G. J. Rieger, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002183048">Über die Summe aus einem Quadrat und einem Primzahlquadrat</a>, J. Reine Angew. Math. 231 (1968), 89-100. %o A361300 (PARI) list(lim)=my(v=List()); forprime(p=2,sqrtint(lim\=1), my(p2=p^2); for(m=1,sqrtint(lim-p2), listput(v,p2+m^2))); Set(v) %Y A361300 Subsequence of A000404; A185086 is a subsequence. %K A361300 nonn,easy %O A361300 1,1 %A A361300 _Charles R Greathouse IV_, Mar 08 2023