cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361316 Numerators of the harmonic means of the infinitary divisors of the positive integers.

This page as a plain text file.
%I A361316 #10 Mar 10 2023 10:37:50
%S A361316 1,4,3,8,5,2,7,32,9,20,11,12,13,7,5,32,17,12,19,8,21,22,23,16,25,52,
%T A361316 27,14,29,10,31,128,11,68,35,72,37,38,39,32,41,7,43,44,3,23,47,48,49,
%U A361316 100,17,104,53,18,55,56,57,116,59,4,61,31,63,256,65,11,67,136
%N A361316 Numerators of the harmonic means of the infinitary divisors of the positive integers.
%H A361316 Amiram Eldar, <a href="/A361316/b361316.txt">Table of n, a(n) for n = 1..10000</a>
%H A361316 Peter Hagis, Jr. and Graeme L. Cohen, <a href="http://dx.doi.org/10.1017/S0004972700017949">Infinitary harmonic numbers</a>, Bull. Australian Math. Soc., Vol. 41, No. 1 (1990), pp. 151-158.
%F A361316 a(n) = numerator(n*A037445(n)/A049417(n)).
%F A361316 a(n)/A361317(n) <= A099377(n)/A099378(n), with equality if and only if n is in A036537.
%F A361316 a(n)/A361317(n) >= A103339(n)/A103340(n), with equality if and only if n is in A138302.
%e A361316 Fractions begin with 1, 4/3, 3/2, 8/5, 5/3, 2, 7/4, 32/15, 9/5, 20/9, 11/6, 12/5, ...
%t A361316 f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; a[1] = 1; a[n_] := Numerator[n * Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
%o A361316 (PARI) a(n) = {my(f = factor(n), b); numerator(n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1)))); }
%Y A361316 Cf. A036537, A037445, A049417, A077609, A063947, A138302, A361317 (denominators).
%Y A361316 Similar sequences: A099377, A103339.
%K A361316 nonn,frac
%O A361316 1,2
%A A361316 _Amiram Eldar_, Mar 09 2023