cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361317 Denominators of the harmonic means of the infinitary divisors of the positive integers.

This page as a plain text file.
%I A361317 #9 Mar 10 2023 10:37:35
%S A361317 1,3,2,5,3,1,4,15,5,9,6,5,7,3,2,17,9,5,10,3,8,9,12,5,13,21,10,5,15,3,
%T A361317 16,51,4,27,12,25,19,15,14,9,21,2,22,15,1,9,24,17,25,39,6,35,27,5,18,
%U A361317 15,20,45,30,1,31,12,20,85,21,3,34,45,8,9,36,25,37,57
%N A361317 Denominators of the harmonic means of the infinitary divisors of the positive integers.
%H A361317 Amiram Eldar, <a href="/A361317/b361317.txt">Table of n, a(n) for n = 1..10000</a>
%H A361317 Peter Hagis, Jr. and Graeme L. Cohen, <a href="http://dx.doi.org/10.1017/S0004972700017949">Infinitary harmonic numbers</a>, Bull. Australian Math. Soc., Vol. 41, No. 1 (1990), pp. 151-158.
%F A361317 a(n) = denominator(n*A037445(n)/A049417(n)).
%t A361317 f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; a[1] = 1; a[n_] := Denominator[n * Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
%o A361317 (PARI) a(n) = {my(f = factor(n), b); denominator(n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1)))); }
%Y A361317 Cf. A037445, A049417, A077609, A063947 (positions of 1's), A361316 (numerators).
%Y A361317 Similar sequences: A099378, A103340.
%K A361317 nonn,frac
%O A361317 1,2
%A A361317 _Amiram Eldar_, Mar 09 2023