cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361318 Harmonic means of the infinitary divisors of the infinitary harmonic numbers.

This page as a plain text file.
%I A361318 #10 Mar 10 2023 10:39:18
%S A361318 1,2,3,4,4,6,7,7,11,13,13,10,7,15,16,15,9,20,18,14,25,24,19,25,15,27,
%T A361318 28,30,18,36,13,21,17,29,40,33,24,28,38,31,29,45,34,27,28,44,27,60,36,
%U A361318 52,46,26,51,42,55,33,66,40,24,37,49,29,47,57,34,68,49,44
%N A361318 Harmonic means of the infinitary divisors of the infinitary harmonic numbers.
%C A361318 Each term appears a finite number of times in the sequence (Hagis and Cohen, 1990).
%H A361318 Amiram Eldar, <a href="/A361318/b361318.txt">Table of n, a(n) for n = 1..239</a>
%H A361318 Peter Hagis, Jr. and Graeme L. Cohen, <a href="http://dx.doi.org/10.1017/S0004972700017949">Infinitary harmonic numbers</a>, Bull. Australian Math. Soc., Vol. 41, No. 1 (1990), pp. 151-158.
%F A361318 a(n) = A361316(A063947(n)).
%t A361318 f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; s[1] = 1; s[n_] := n * Times @@ f @@@ FactorInteger[n]; Select[Array[s, 10^4], IntegerQ]
%o A361318 (PARI) ihmean(n) = {my(f = factor(n), b); n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1))); };
%o A361318 lista(kmax) = {my(ih); for(k = 1, kmax, ih = ihmean(k); if(denominator(ih) == 1, print1(ih, ", ")));}
%Y A361318 Cf. A063947, A361316, A361317.
%Y A361318 Similar sequences: A001600, A006087.
%K A361318 nonn
%O A361318 1,2
%A A361318 _Amiram Eldar_, Mar 09 2023