cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361319 Indices of records in the sequence of infinitary harmonic means A361316(k)/A361317(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 54, 56, 60, 84, 105, 120, 168, 210, 264, 270, 280, 360, 420, 540, 660, 756, 840, 1080, 1320, 1512, 1848, 1890, 2310, 2520, 3080, 3640, 3780, 4620, 5460, 5940, 7020, 7560, 9240, 10920, 11880, 14040, 16632, 19656
Offset: 1

Views

Author

Amiram Eldar, Mar 09 2023

Keywords

Examples

			The infinitary harmonic means of the first 6 positive integers are 1 < 4/3 < 3/2 < 8/5 < 5/3 < 2. The next record, A361316(8)/A361317(8) = 32/15, occurs at 8. Therefore, the first 7 terms of this sequence are 1, 2, 3, 4, 5, 6 and 8.
		

Crossrefs

Similar sequences: A179971, A348654.
Other sequences related to records of infinitary divisors: A037992, A327634.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; ihmean[1] = 1; ihmean[n_] := n*Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{ih, ihmax = 0, s = {}}, Do[ih = ihmean[k]; If[ih > ihmax, ihmax = ih; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[20000]
  • PARI
    ihmean(n) = {my(f = factor(n), b); n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1))); };
    lista(kmax) = {my(ih, ihmax=0); for(k = 1, kmax, ih = ihmean(k); if(ih > ihmax, ihmax = ih; print1(k, ", ")));}