A361341 Numbers k such that A361338(k) = 2.
112, 113, 114, 115, 116, 117, 119, 122, 123, 124, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 146, 147, 153, 155, 157, 159, 162, 163, 166, 168, 169, 172, 173, 175, 176, 177, 178, 182, 183, 184, 186, 193, 198, 199, 211, 213, 221, 224, 228, 229, 231, 233, 234, 235, 241, 243, 244, 248, 253, 259, 264, 268, 272, 273, 275, 281, 282
Offset: 1
Examples
From _M. F. Hasler_, Apr 08 2023: (Start) From 112 we can get 1*12 = 12 and 11*2 = 22, then 1*2 = 2 and 2*2 = 4. All smaller numbers have only one possible outcome: for n = 111 the only possible outcome is 1, for 99 < n < 111, the outcome is always 0, and for 2-digit numbers there is only one possibility for the split-and-multiply operation and the result is always smaller than the initial value. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..7920
Programs
-
Mathematica
-1 + Position[#, 2][[All, 1]] &@ Flatten@ Array[Map[Total, Transpose@ ImageData[ColorNegate@ Import["https://oeis.org/A361338/a361338_2.png", "PNG"], "Bit"][[10 # + 1 ;; 10 # + 10, 1 ;; 1000]]] &, 1, 0] (* Michael De Vlieger, Apr 06 2023, using image at A361338 *)
-
PARI
select( {is_A361341(n)=A361338(n)==2}, [0..300]) \\ M. F. Hasler, Apr 08 2023