This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361350 #15 Mar 18 2023 08:07:58 %S A361350 11,112,1124,11248,1124816,2486,248620,4860,486018,48601827, %T A361350 4860182736,486018273645,8601827365,860182736546,86018273654656, %U A361350 8601827365465667,860182736546566780,601273654656670,60127365465667064,-1273545704,-127354570438,-12735457043849,-1273545704384962,-127354570438496270,1273545743849627,127354574384962777,12735457438496277791,273545743849627779 %N A361350 A variant of A359143 which includes the intermediate terms before digits are deleted (see Comments for precise definition). %C A361350 This is essentially the same sequence as A359143 (so this too is a finite sequence), the difference being that it includes the terms before any digits are cancelled. Let S be the digit string of a(n), replacing a minus sign if present by 0. %C A361350 Let T = S concatenated with the digit-sum of S. %C A361350 If the leading digit of T is not present in the digit-sum of S, then a(n+1) = A359142(T), as in A359143. %C A361350 If the leading digit of T is present in the digit-sum of S, then we add two new terms instead of one: a(n+1) = a(n) concatenated with the digit-sum of S, and a(n+2) = A359142(T), as in A359143. %H A361350 Michael De Vlieger, <a href="/A361350/b361350.txt">Table of n, a(n) for n = 0..10000</a> %H A361350 Michael De Vlieger, <a href="/A361350/a361350_2.png">Scatterplot of log_10(abs(a(n)))</a>, n = 1..10^3, showing negative terms in red. %H A361350 Michael De Vlieger, <a href="/A361350/a361350_3.png">Scatterplot of log_10(abs(a(n)))</a>, n = 1..10^4, showing negative terms in red. %H A361350 Michael De Vlieger, <a href="/A361350/a361350_4.png">Scatterplot of log_10(abs(a(n)))</a>, showing all terms, with negative terms in red. %e A361350 The digit strings for the initial terms are: %e A361350 11, %e A361350 112, %e A361350 1124, %e A361350 11248, %e A361350 1124816, %e A361350 2486, %e A361350 248620, %e A361350 4860, %e A361350 486018, %e A361350 48601827, %e A361350 4860182736, %e A361350 486018273645, %e A361350 8601827365, %e A361350 860182736546, %e A361350 86018273654656, %e A361350 8601827365465667, %e A361350 860182736546566780, %e A361350 601273654656670, %e A361350 60127365465667064, %e A361350 01273545704, %e A361350 0127354570438, %e A361350 012735457043849, %e A361350 01273545704384962, %e A361350 0127354570438496270, %e A361350 1273545743849627, %e A361350 127354574384962777, %e A361350 12735457438496277791, %e A361350 273545743849627779, ... %e A361350 The sequence itself is obtained by replacing the leading zeros by minus signs. %e A361350 For example, after the term 601273654656670, we first append its digit-sum 64, getting 60127365465667064. Since the leading digit 6 is present in 64, we cancel all the 6's, getting 01273545704. The corresponding term in the sequence is -1273545704. %t A361350 a[1] = {1, 1}; nn = 28; %t A361350 Do[Which[ListQ[m], k = m; Clear[m], %t A361350 FreeQ[#3, #2], Set[k, #1~Join~#3], %t A361350 True, Set[k, #1~Join~#3]; %t A361350 Set[m, DeleteCases[#1~Join~#3, #2]]] & @@ %t A361350 {#, First[#], IntegerDigits@ Total[#]} &[a[n - 1]]; %t A361350 Set[a[n], k], {n, 2, nn}]; %t A361350 Array[(1 - 2 Boole[First[#] == 0])*FromDigits@ # &@ a[#] &, nn] (* _Michael De Vlieger_, Mar 16 2023 *) %Y A361350 Cf. A359142, A359143. %K A361350 sign,base,fini %O A361350 0,1 %A A361350 _N. J. A. Sloane_, Mar 16 2023 %E A361350 More than the usual number of terms are shown in order to clarify the differences from A359143.